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The Online Appendix provides a number of results, proofs, figures, examples and derivations

that were omitted from the main text. Sections OA.1 and OA.2 provide the proofs, results and

derivations omitted from Sections III and IV respectively. Section OA.3 provides details on how

I approximate the Cobb–Douglas lognormal specification from Section V. Section OA.4 provides

the specifications for which all Figures from the main text have been created, as well as the

one figure (Figure OA.1) that has been omitted from the main text. Section OA.5 provides and

proves all the formal results on which the discussion in Section VI is based. Finally, Section

OA.6 shows that the equilibrium separation function is differentiable with respect to θ.

OA.1 Section III: Proofs and Omitted Results

Supermodularity and Imperfect Substitution

In this section, I briefly explain why supermodularity (submodularity) of the surplus function

implies that workers of similar rank are imperfect substitutes in production: It needs to be read

after Section III.A.2. First, write firm’s hi profit from hiring worker of skill vi as ri(vi, hi), then

∂

∂vi
ri(vi, hi) =

∂

∂vi
πi(vi, hi)−

∂

∂vi
wi(vi).

This and the first-order condition of the profit maximization problem imply that

∂

∂vi
ri(vi, hi) =

∫ hi

Pi(x)

∂2

∂vi∂hi
πi(vi, z)dz

where Pi(vi) = 1 − Si(vi)/Ri denotes the matching function, that is, the inverse of v∗i . Un-

der strict supermodularity (submodularity) Pi is strictly increasing (decreasing) and hence
∂
∂vi
ri(vi, hi) > 0 for vi < v∗i (hi) and ∂

∂vi
ri(vi, hi) < 0 for vi > v∗i (hi). Thus, indeed, the

firm’s profit is unimodal in skill vi.
1

However, if ∂2

∂vi∂hi
πi is strictly positive for some worker-firm pairs, and strictly negative for

others, then workers of very different ranks might be closer substitutes than workers of very

close ranks. Suppose that the surplus function in services is given by

πS(vS , hS) = ((vS − 0.5)2 + hS)2 + (2 + v2
S)2 − 4,

Assumption 5 is satisfied, and vcS = 0. Note that this surplus function is not supermodular,

but it does satisfies all other of my assumptions. The within-sector assignment can be easily

determined despite the failure of supermodularity, by noting that the surplus function is super-

modular in v̄S = |vS − 0.5|. It can be thus easily shown that a worker of skill vi is matched

with firm of productivity |Gi(vi)−Gi(1− vi)|, which implies that both the best and the worst

worker are matched with the most productive firm. It follows, thus, from profit maximization

that

wS(1)− wS(0) = πS(1, 1)− πS(0, 1) = 5,

while πS(1, 1) − πS(0.5, 1) > 5. As a corollary, any change to the supply of skill in services

1In the case of additively separable surpluses ∂
∂vi

ri(vi, hi) = 0 and all workers are perfect substitutes.
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(that preserves vcS = 0) affects the highest and lowest wage in the economy in the same way,

but might affect the wages of the highest and medium ranked workers differently. This implies

immediately that, for example, Proposition 1 (ii) would not hold under this surplus function,

and neither would Proposition 2 (v).

Demand: Formal Definition and Shifts

The definition of sectoral demand for skill (Section III) holds for a given hiring function and

under the assumption that profit is strictly increasing. However, if, for example, surplus does

not depend on firm productivity, then (in equilibrium) (a) firms will be indifferent which worker

to hire and there will exist many different hiring functions and (b) all firms will make the

same profits. Here, I amend the definition of sectoral demand to allow for such possibilities.

Accordingly, the economy will be in equilibrium if there exists at least one demand function

consistent with firms maximization problem for which the market clears.

Definition OA.1. A mapping v∗i : [0, 1] → [0, 1] ∪ {−1} is a hiring function in sector i for

wage function wi, if (a) for v∗(h) ∈ [0, 1], v∗i (h) ∈ arg maxvi πi(vi, h)−wi(vi) and πi(v
∗
i (h), h)−

wi(v
∗
i ) ≥ 0 and (b) for v∗i (h) = −1, πi(vi, h)− wi(vi) ≤ 0 for all vi ∈ [0, 1] .

Given a talent level vi and an input function v∗i , define the setB(vM , v
∗
i ) = {h ∈ [0, 1], v∗i (h) ≥

vM}.

Definition OA.2. A mapping Di : [0, 1]→ [0, R] is a sector i demand function for skill given

wage function wi, if there exists a hiring function such that RM
∫
B(vi,v∗i ) 1dvi = Di(vi), for all

vi ∈ [0, 1].

For any matching problem, I will denote as DC(θ) the set of all possible cumulative demand

functions and as DC(vM , θ) the set of their values for talent vM .

Definition OA.3. Demand for skill shifts up if—given the old equilibrium wage function

wM (·; θ1) and for all vM ∈ [0, 1]—for any h′′ ∈ DC(vM ; θ2) and h′ ∈ DC(vM ; θ2) we have

that max{h′′, h′} ∈ DC(vM ; θ2) and min{h′′, h′} ∈ DC(vM ; θ1).

Proposition OA.1. If ∂
∂vS

πS(vS , hS ; θ2) ≥ ∂
∂vS

πS(vS , hS ; θ1) and πS(vS , hS ; θ2) ≥ πS(vS , hS ; θ1)

for all (vS , hS) ∈ [0, 1]2, then the demand for skill shifts up in services. If RM + RS ≤ 1 then,

an increase in workers’ vertical differentiation alone suffices for an upward shift of skill demand.

Proof. The partial order ([0, 1],≥) is clearly a lattice and the function πi(v, h) − wi(v) is su-

permodular in v (for any h). Thus, as an increase in vertical differentiation implies that

πi(v, h) − wi(v) has increasing differences in c it follows from the results in Topkis (1978) and

Milgrom and Shannon (1994) that the set V ∗(ci) = {v ∈ [0, 1] : v ∈ arg maxπi(v, h, (c)−wi(v)}
increases in the strong set order sense with a change from θ1 to θ2. This proves the second

statement, as v∗i (h) ∈ [0, 1] for all firms in that case. As for the first claim, note that the

increase in surplus levels means that each firm’s profit increases for the old choice of inputs,

and hence, by profit maximization, also for the new choice. Thus, no firms leave the market

and the result follows.
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Proof of Lemma 1

Denote {vM ∈ [0, 1] : wM (vM ) ≥ max{wS(0), 0}} by AM , and minAM by v′M ; notice that

Equation (8) implies that wi(·) is increasing and continuous.

I will first show thatAM has a positive measure. Suppose not, then wM (vM ) < max{wS(0), 0}
for almost all (vM ) and hence (a) wM (1) ≤ max{wS(0), 0} by continuity and (b) SM (0) = 0

by increasingness of wS and Equation (1). The latter implies that vcM = 1 and wM (vM ) =

πM (vM , 1) (as SM (0) < RM ). Overall, this implies πM (1, 1) ≤ {wS(0), 0}. If RS < 1,

then wS(0) < 0 and we have πM (1, 1) ≤ 0. However, πM (1, 1) > 0 by πM (0, 1) ≥ 0 and

Assumption A2.2; contradiction! If RS ≥ 1, then wS(0) ≤ πS(0, 1 − 1
RS

), which implies

πM (1, 1) ≤ πS(0, 1− 1
RS

) and thus contradicts Assumption 4.

If AM has a positive measure, then v′M must be strictly less than 1. First, suppose that vcM <

v′M , implying that v′M > 0 which implies further (by continuity) that v′M = max{wS(0), 0}.
As wM is continuous, there must exist some ε > 0 such that wM (vM ) < max{wS(0), 0} for

all workers with vM ∈ [vcM , v
c
M + ε]. As wS is increasing, this implies that all workers with

vM ∈ [vcM , v
c
M + ε] prefer to remain unemployed or work in services than to join manufacturing

and SM (vcM ) = SM (v′M ), which contradicts the definition of vcM . Thus, vcM ≥ v′M .

Second, suppose that vcM > v′M , which implies that wM (vcM ) > max{wS(0), 0} and vcM > 0.

By continuity of wM , wS there exist some v′M and v′S such that wM (vM ) > max{wS(vS), 0}
for all (vM , vS) ∈ (v′M , v

c
M ) × [0, v′S ], so that all workers living in this rectangle prefer to join

manufacturing than remain unemployed or join services.. As C has full support, a strictly

positive measure of workers lives in this rectangle, which contradicts the definition of vcM .

Thus, vcM = v′M , as required. The proof for vcS is analogous.

Finally, let me prove the last statement. First, I will consider the case of vcM , v
c
S ∈ (0, 1).

This implies that (a) some workers are unemployed (because workers with (vM , vS) < (vcM , v
c
S)

cannot join either sector by definition of critical skills) and (b) that wM (vcM ) = max{wS(0), 0}
and wS(vcS) = max{wM (0), 0}. Suppose wS(0) > 0; then there exists v′′M < vcM , such that

all workers with (vM , vS) ∈ (v′′M , v
c
M ) × (0, vcS) prefer to join manufacturing than to remain

unemployed, which contradicts the definition of vcM ; thus wM (vcM ) = 0. An analogous reasoning

holds for wS(vcS).

Now suppose that vcM = 0. It follows immediately that wS(vcS) 6= wM (vcM ) only if wS(vcS) >

wM (vcM ). There must then exist an ε2 > 0 such that wM (vM ) < wS(vS) for all (vM , vS) ∈
[0, ε2] × [vcS , v

c
S + ε2], so that all workers with such skill vectors prefer to work in services over

manufacturing, which contradicts the definition of vcM .

Proof of Lemma 2

I start with manufacturing. The probability that a worker with skill vM ≥ vcM chooses services

is Pr(ψ(VS) < vM |VM = vM ). Note that because ψ is weakly increasing, it follows that if

ψ(v′S) < vM then ψ(v′′S) < vM for any v′S ≥ v′′S ≥ vcS . Thus:

Pr(ψ(VS) < vM |VM = vM ) =
∂

∂vM
C(vM , φ(vM )) for vM ≥ vcM ,
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where φ(vM ) = sup{vS ∈ [vcS , 1] : ψ(vS) < vM}. Because SM (1) = 0, this gives us the required

expression for S(vM ) if vM ≥ vcM . And, of course, for any vM < vcM , SM (vM ) = SM (0) by the

definition of critical skill.

The proof for SS(·) is analogous.

Proof of Theorem 1

Define the extended separating function ψe : [vcS , 1]→ [vcM , 1 +B] as

ψe(vS) = vcM +

∫ vS

vcS

∂
∂vS

πeS

(
t, 1−

∫ 1
t

∂
∂vS

Ce(ψ(r),r)dr

RS

)
∂

∂vM
πeM

(
ψ(t), 1−

∫ 1
t

∂
∂vM

Ce(r,φ(r))dr

RM

)dt, (OA.1)

where he extended functions Ce(•), πeM (•) and πeS(•) are defined as follows (1) Ce : [0, 1 +B]×
[0, 1]→ [0, 1]

Ce(vM , vS) =

C(vM , vS) for (vM , vS) ∈ [0, 1]× [0, 1]

vS for (vM , vS) ∈ (1, 1 +B]× [0, 1],

(2): πeM (vM , h) : [0, 1 +B]× [0, 1+RM
RM

]→ R+

πeM (vM , h) =



πM (vM , h) for (vM , h) ∈ [0, 1]2

πM (1, h) + (vM − 1) ∂
∂vM

πM (1, h) for (vM , h) ∈ (1, B]× [0, 1],

πM (vM , 1) for (vM , h) ∈ [0, 1]× (1, 1+RM
RM

],

πM (1, 1) + (vM − 1) ∂
∂vM

πM (1, 1) for (vM , h) ∈ (1, B]× (1, 1+RM
RM

],

(3): πeS(vS , h) : [0, 1]× [0, 1 + 1
RS

]→ R+

πeS(vS , h) =

πS(vS , h) for (vM , h) ∈ [0, 1]2

πS(vS , 1) for (vM , h) ∈ [0, 1]× (1, 1 + 1
RS

],

and B =
max ∂

∂vS
πS

min ∂
∂vM

πM
. Note that Ce(·, vS), ∂

∂vS
Ce(·, vS), ∂

∂vM
πeM (·, ·) and ∂

∂vS
πeS(vS , ·) are Lips-

chitz continuous2; denote their Lipschitz-constants as L1, L2 ,L3, L4 and L5 respectively.

2 I will do this in detail for ∂
∂vS

Ce(vM , vS)—the reasoning for the other two is analogous. ∂
∂vS

Ce(vM , vS) :

[0, 1 +B]× [0, 1]→ [0, 1]:

∂

∂vS
Ce(vM , vS) =

{
∂
∂vS

C(vM , vS) for (vM , vS) ∈ [0, 1]× [0, 1]

1 for (vM , vS) ∈ (1, 1 +B]× [0, 1],

is clearly continuous in u. It is equally easy to see that the function ∂
∂vS

Ce(·, vS) is differentiable almost every-

where and its derivative is Lebesque integrable. It is also the case that for any (vM , vS) ∈ (1, 1 + B] × [0, 1] we
have:

∂

∂vS
Ce(a, vS) +

∫ 1

a

Ceuv(r, vS)dr +

∫ vM

1

0dr = 1,

which means that ∂
∂vS

Ce(·, vS) is absolutely continuous. Moreover, as Ce(•) is twice continuously differentiable

and any continuous function defined on a compact set is bounded it follows that ∂
∂vS

Ce(·, vS) is essentially

4
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Clearly, given vcM and vcS the separating function ψ uniquely determines the extended sep-

aration function ψe. Similarly, it should be clear that

ψ(vS) =

ψe(vS) if ψe(vS) ≤ 1,

1 otherwise.

The result for ψe(vS) ≤ 1 follows from noting that ψe is strictly increasing and then substituting

Equation (8) into Equation (11), differentiating wrt vS , dividing both sides by

∂

∂vM
πM

(
ψ(vS),

1

RM

∫ ψ(vS)

vcM

∂

∂vM
C(r, ψ−1(r))dt

)
and then integrating from vcS to vS (and remembering that ψ(vcS) = vcM ).3 The other part

follows from the fact that for vS ’s such that wS(vS) ≤ wM (1) we have ψ(vS) = 1 and ψe(vS) > 1

(because ψe is strictly increasing).

Thus, it is sufficient to prove that ψe, vcM , v
c
S exist and are unique. Let me make a few

observations that will prove useful.

Relation Between Supply Functions By differentiating C(ψ(r), r) rearranging and inte-

grating from vcS to vS , we arrive at

SM (0)− SM (ψ(vS)) + SS(0)− SS(vS) = C(ψ(vS), vS)− C(vcM , v
c
S). (OA.2)

Determining the Critical Skills As the critical skills vcM , v
c
S are also unknown, we need to

find conditions that will pin them down. Let me start by denoting the measure of employed

workers as M = SM (0) + SS(0). Clearly, M = min{RM + RS , 1} in equilibrium: otherwise we

have Si(0) < Ri in some sector i, implying that a positive measure of workers with skill below

(vcM , v
c
S) would strictly prefer to join sector i than remain unemployed. By Equation (OA.2)

this gives 1−M = Ce(vcM , v
c
S), determining one of the critical skills as a function of the other.

Furthermore, note that Assumption 4 implies that vcM , v
c
S < 1 and thus SM (0), SS(0) > 0.4

Therefore, from Lemma 1 it follows that if SM (0) < RM then:

πM (vcM , 1−
SM (0)

RM
) = wM (vcM ) = wS(vcS) ≤ πS(vcS , 1−

M − SM (0)

RS
),

and analogously for services. This determines the other critical skill if RM + RS > 1. Finally,

recall that market clearing implies that Si(0) ≤ Ri, implying that if RM + RS ≤ 1 we have

SM (0) = RM and SS(0) = RS .

bounded; and a differentiable almost everywhere, absolutely continuous function with an essentially bounded
derivative is Lipschitz-continuous.

3This gives us Equation (OA.1), but with ψ rather than ψe on the right hand side.
4If Ri < 1 this follows immediately from 1 − M = Ce(vcM , v

c
S). Otherwise, suppose that vcM = 1; then

SM (0) = 0 < RM and wM (1) = πM (1, 1) > πS(0, 1 − 1
RS

) ≥ wS(0). But then, by continuity of πM and

Proposition ?? follows that there must exist some ε > 0 such that all workers with (vM , vS) ∈ [0, ε] × [1 − ε, 1]
would prefer to join manufacturing, contradicting vcM = 1.

5
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The Set of Equations and Inequalities By substituting Si(vi) = Si(0)−Si(vi) and Equa-

tion (OA.2) into Equation (OA.1) we arrive at

ψe(vS) = vcM +

∫ vS

vcS

∂
∂vS

πeS

(
t,
RS−SS(0)+

∫ t
vc
S

∂
∂vS

Ce(ψ(r),r)dr

RS

)
∂

∂vM
πeM

(
ψe(t),

RM−1+SS(0)+Ce(ψe(t),t)−
∫ t
vc
S

∂
∂vS

Ce(ψe(r),r)dr

RM

)dt. (OA.3)

This, together with

M = min{RM +RS , 1} (OA.4)

1−M = Ce(vcM , v
c
S), (OA.5)

SS(0) =

∫ 1

vcS

∂

∂vS
Ce(ψ(r), r)dr, (OA.6)

SS(0) ∈ Θ(M) = [max{0,M −RM},min{1, RS}] (OA.7)

SM (0) < RM ⇒ πeM (vcM , 1−
SM (0)

RM
) ≤ πeS(vcS , 1−

M − SM (0)

RS
), (OA.8)

SS(0) < RS ⇒ πeS(vcS , 1−
M − SM (0)

RS
) ≤ πeM (vcM , 1−

SM (0)

RM
). (OA.9)

constitutes the set of Equations and Inequalities that determines ψe, vcM , v
c
S .

The remainder of the proof shows that there exists a unique solution to Equations (OA.3)-

(OA.9). Define the set

K = {d ∈ C[0, 1] : d(vS) ∈ [0, 1 +B]},

where C[0, 1] is the set of all continuous functions that map from [0, 1]. The constant function

d(vS) = 1 lies in K and hence the set is non-empty. Define a (Bielecki) norm, || · ||λ on C[0, 1]:

||h||λ = sup[0,1]e
−λvS |h(vS)|,

where λ is some weakly positive number. K is a complete metric space for the metric implied

by this norm.5

Endow the sets [0, 1]2 and Θ(M) with the Euclidean norm and define a mapping T :

K × [0, 1]2 ×Θ(M)→ K

(T d)(vS , v
c
S , v

c
M , SS(0)) = vcM

+


0 for vS < vcS∫ vS
vcS

∂
∂vS

πeS(t,
RS−SS(0)+

∫ t
vc
S

∂
∂vS

Ce(d(r),r)

RS
dr)

∂
∂vM

πeM (d(t),
RM−1+SS(0)+Ce(d(t),t)−

∫ t
vc
S

∂
∂vS

Ce(d(r),r)dr

RM
dr)

dt for vS ≥ vcS .

5If we endowed K with the sup-norm, then K would be a closed subset of C[0, 1]; since C[0, 1] is complete in
the sup-norm, so is K. It was shown by Bielecki (1956) that the || · ||λ norm is equivalent to the sup-norm for
any C[a, b]. As K is a closed subset of C[a, b] under the metric implied by Bielecki norm, it is also complete and
thus K endowed with the Bielecki metric is a complete metric space for || · ||λ.
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Note that this map is well-defined, as for any vcS ∈ [0, 1] and d ∈ K:

RS − SS(0) +
∫ t
vcS

∂
∂vS

Ce(d(r), r)

RS
dr ≤ 1 +

∫ t

vcS

1

RS
dr ≤ 1

RS
+ 1

RM − 1 + SS(0) + C(d(t), t)−
∫ t
vcS

∂
∂vS

Ce(d(r), r)dr

RM
≤ RM + C(d(t), t)

RM
≤ 1

RM
+ 1;

and that it is continuous in v, vcS , vcM and SS(0). Clearly, (T d)(vS , v
c
S , v

c
M , SS(0)) ≥ vcM ≥ 0.

Further, for vS ≥ vcS :

(T d)(vS , v
c
S , v

c
M , SS(0)) ≤

∫ vS

vcS

Bdt+ vcM ≤ 1 +B,

and for vS < vcS :

(T d)(vS , v
c
S , v

c
M , SS(0)) ≤ vcM − 1 ≤ 1 +B,

so indeed T (K) ⊂ K. Finally, it should be clear that for any (vcS , v
c
M , SS(0)) the restriction of

any fixed point of (T d)(•) to [vcS , 1] gives us the solution to (OA.3) and that any solution to

(OA.3) can be easily extended into a fixed point of (T d)(•). Therefore, it suffices to show that

there exists such a λ that for any (vcS , v
c
M , SS(0)) ∈ [0, 1]2 ×Θ(M), T d(•) is a contraction wrt

to the norm || · ||λ to show that (OA.3) has a unique solution for any feasible (vcM , v
c
S , SS(0)).

Let us drop (vcS , v
c
M , SS(0)) from the definition of the map (remembering that we are keeping

them constant) and enhance our notation by new maps: SS : [vcS , 1]×K → [0, 1], PS : [vcS , 1]×
K → [0, 1 + 1

RS
] and PM : [0, B]×K → [0, 1 + 1

RM
]

(SSd)(vS) = SS(0)−
∫ vS

vcS

∂

∂vS
Ce(d(r), r)dr,

(PSd)(vS) =
RS − (SSd)(vS)

RS
,

(PMd)(d(vS)) =
RM − 1 + Ce(d(vS), vS) + (SSd)(vS)

RM
.

Take any t ≥ vcS and any d1, d2 ∈ S and for any map (fd)(t) denote (fd1)(t) − (fd2)(t) as

∆d(fd)(t). Then we have:

|∆d(SS(0)d)(t)| = |
∫ t

vc
Cev(d1(r), r)− Cev(d2(r), r)dr| (OA.10)

≤
∫ t

vc
|Cev(d1(r), r)− Cev(d2(r), r)|dr ≤

∫ t

vc
L2|d1(r)− d2(r)|dr|

= L2

∫ t

vc
eλre−λr|d1(r)− d2(r)|dr ≤ L2||d1 − d2||λ

∫ t

vc
eλrdr

=
L2

λ
||d1 − d2||λ(eλt − eλvc) ≤ L2

λ
||d1 − d2||λeλt,

7
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which can be used to establish

|∆d(PSd)(t)| ≤ L2

λRS
||d1 − d2||λeλt (OA.11)

|(PMd1)(d1(t))− (PMd2)(d2(t))| = |C
e(d1(v), v)− Ce(d2(v), v)−∆d(SS(0)d)(v)

RM
| (OA.12)

≤ 1

RM
(|Ce(d1(v), v)− Ce(d2(v), v)|+ |∆d(SS(0)d)(v)|)

≤ L2

λM
||d1 − d2||λeλt +

L1

RM
|d1(t)− d2(t)|.

Denote L6 = sup ∂
∂vS

πS(vS , h), L7 = inf ∂
∂vM

πM (vM , h) and note that continuity of ∂
∂vM

πM and
∂
∂vS

πS and the fact that ∂
∂vM

πM > 0 imply that both L6 and L7 are finite. Using all this, we

can write, for any vS ≥ vcS and any d1, d2 ∈ S:

|∆d(T d)(v)| = |
∫ v

vc

∂
∂vS

πeS(t, (PSd1)(t))

∂
∂vM

πeM (d1(r), (PMd1)(d1(t)))
−

∂
∂vS

πeS(t, (PSd2)(t))

∂
∂vM

πeM (d2(r), (PMd2)(d2(t)))
dt|

≤
∫ v

vc
|

∂
∂vS

πeS(t, (PSd1)(t))

∂
∂vM

πeM (d1(r), (PMd1)(d1(t)))
−

∂
∂vS

πeS(t, (PSd2)(v, ))

∂
∂vM

πeM (d1(r), (PMd1)(d1(t)))

+

∂
∂vS

πeS(t, (PSd2)(t))

∂
∂vM

πeM (d1(r), (PMd1)(d1(t)))
−

∂
∂vS

πeS(t, (PSd2)(t))

∂
∂vM

πeM (d2(r), (PMd2)(d2(t)))
|dt

≤
∫ v

vc

| ∂∂vS π
e
S(t, (PSd1)(t))− ∂

∂vS
πeS(t, (PSd2)(t))|

L7

+L6(|
∂

∂vM
πeM (d1(r), (PMd1)(d1(t)))− ∂

∂vM
πeM (d2(r), (PMd2)(d2(t)))

∂
∂vM

πeM (d1(r), (PMd1)(d2(t))) ∂
∂vM

πeM (d2(r), (PMd2)(d2(t)))
|dt

≤
∫ v

vc

L5

L7
|∆d(PSd)(t)|

+
L6

L2
7

[| ∂
∂vM

πeM (d1(r), (PMd1)(d1(t)))− ∂

∂vM
πeM (d2(t), (PMd1)(d1(t))|]

+
L6

L2
7

[| ∂
∂vM

πeM (d2(t), (PMd1)(d1(t))− ∂

∂vM
πeM (d2(r), (PMd2)(d2(t)))|]dt

≤
∫ v

vc

L5L2

λL7RS
||d1 − d2||λeλ(t−vc) +

L3L6

L2
7

|d1(t)− d2(t)|

+
L4L6

L2
7

|(PMd1)(d1(t))− PMd2)(d2(t))|dt

≤ L5L2

λ2L7RS
||d1 − d2||λeλv +

L3L6

λL2
7

||d1 − d2||λeλv

+

∫ v

vc

L4L6

L2
7

(
L2

λM
||d1 − d2||λeλ(t−vc) +

L1

RM
|d1(t)− d2(t)|)dt

≤ 1

λ
||d1 − d2||λeλv

[ L5L2

λL7RS
+
L3L6

L2
7

+
L4L6

L2
7

( L2

λM
+

L1

RM

)]
Now, for vS < vcS this has to hold as well, as then |(T d1)(vS)− T (d2)(vS)| = 0; therefore, for

any vS ∈ [0, 1] we have that

|∆d(T d)(vS)| ≤ 1

λ
||d1 − d2||λeλvS

[ L5L2

λL7RS
+
L3L6

L2
7

+
L4L6

L2
7

( L2

λM
+

L1

RM

)]
.
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Dividing both sides of that by eλvS and then taking sup on both sides we get

||(T d1)(t)−T (d2)(t)||λ ≤
1

λ
||d1 − d2||λ

[ L5L2

λL7RS
+
L3L6

L2
7

+
L4L6

L2
7

( L2

λM
+

L1

RM

)]
. (OA.13)

Therefore, there has to exist a high enough λ for which our map (T d)(vS) is a contraction in

the metric space (S, || · ||λ)—which, by Banach’s Fixed-Point Theorem means that (T d)(vS)

has a unique fixed point, which in turn means that Equation (OA.3) has a single solution for

any given (vcS , v
c
M , SS(0)) ∈ [0, 1]2 × Θ(M). Note that Equation (OA.13) does not depend on

(vcS , v
c
M , SS(0))—and thus, by standard results (see e.g. Hasselblatt and Katok, 2003, p. 68) it

follows that as (T d)(vS , v
c
S , v

c
M , SS(0)) is continuous in vcS , vcM and SS(0) the fixed point—and

thus the solution of (OA.3)— is continuous in them as well.

Denote the fixed point of (T d)(·, vcS , vcM , SS(0)) as d∗(·, vcS , vcM , SS(0))—then the following

result holds

Lemma OA.1. The function d∗(·, vcS , vcM , SS(0)) is weakly decreasing in vcS and SS(0) and

weakly increasing in vcM for all vS ’s. Moreover, for some vS ’s, d∗(·, vcS , vcM , SS(0)) is strictly

decreasing in vcS and SS(0) (strictly increasing in vcM ).

Proof. I start with the claims regarding d(vS , ·, vcM , SS(0)) and suppress vcM and SS(0) from

notation for that part of the proof. Take any vcS2 > vcS1 ∈ [0, 1], denote d∗(vS , v
c
S2)− d∗(vS , vcS1)

as ∆vcS
d∗(vS , v

c
S) and for vS ≥ vcS define

SS(vS , v
c
S) = SS(0)−

∫ vS

vcS

∂

∂vS
C(d∗(r, vcS), r)dr,

PS(vS , v
c
S) =

RS − SS(vS , v
c
S)

RS
,

PM (d∗(vS , v
c
S), vcS) =

RM − 1 + C(d∗(vS , v
c
S), r) + SS(vS , v

c
S)

RM
.

Then for any vS ≥ vcS2 we have

∆vcd
∗(v, vc) = vcS2 − vcS1

+

∫ v

vcS

∂
∂vS

πeS(t, PS(t, vcS2))

∂
∂vM

πeM (d∗(t, vcS2), PM (d∗(t, vcS2), vcS2))
−

∂
∂vS

πeS(t, PS(t, vcS1))

∂
∂vM

πeM (d∗(t, vcS1), PM (d∗(t, vcS1), vcS1))
dt.

It is trivial that for any vS ∈ [vcS1, v
c
S2) we have ∆vcS

d∗(vS , v
c
S) < 0, which proves the second

(strict) part of this claim. Thus, we only need to show now that ∆vcS
d∗(vS , v

c
S) ≤ 0 for all

vS ∈ [vcS2, 1]. Suppose not. Then the set Ωgen = {vS ∈ [vcS2, 1] : ∆vcS
d∗(vS , v

c
S) > 0} has to be

non-empty. Then we have that for vS
g = inf Ωgen, ∆vcS

d∗(vS
g, vcS) = 0 and ∆vcS

∂
∂vS

d∗(vS
g, vcS) ≥

0. The sign of ∆vcS
∂
∂vS

d∗(vS
g, vcS) depends only on the signs of

∂

∂vS
πeS(vS

g, PS(vcS2, vS
g))− ∂

∂vS
πeS(vS

g, PS(vcS1, vS
g))

and

∂

∂vM
πeM (d∗(vS

g, vcS1), PM (d∗(vS
g, vcS1), vcS1))− ∂

∂vM
πeM (d∗(vS

g, vcS2), PM (d∗(vS
g, vcS2), vcS2)).
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This can be easily seen by differentiation the expression that gives ∆vcd
∗(v, vc).6 However, as

∆vcS
d∗(vS

g, vcS) = 0 and both surplus functions are weakly supermodular, these in turn depend

only on the sign of SS(vcS2, vS
g) − SS(vcS1, vS

g). As for any vS ≤ vS
g it was the case that

∆vcS
d∗(vS

g, vcS) ≤ 0 and vcS2 > vcS1, it follows that: SS(vcS2, vS
g)− SS(vcS1, vS

g) < 0 and thus:

∆vcS

∂

∂vS
d∗(vS , v

c
S) < 0,

which means that Ωgen has to be empty and proves our first claim.

The proof for SS(0) is analogous.7 For vcM , note that for a change in vcM , ∆vcM
d∗(vcS , v

c
M ) is

positive. The subsequent reasoning is analogous, but with opposite signs (the strict decreasing-

ness follows from ∆vcM
d∗(vcS , v

c
M ) < 0 and continuity).

Everything I derived so far applies both for cases with abundant and scarce jobs. From now

on, however, I will consider those cases separately.

Scarce jobs If RM + RS < 1, then M = RM + RS , which reduces (OA.9) to SS(0) = RS

and gives C(vcM , v
c
S) = 1− RM − RS > 0. For (vM , vS) > 0, C(•) is strictly increasing in both

parameters, which allows us to define vcM as a strictly decreasing, continuous function of vcS .

Define vS as vcM (vS) = 1 and note that, as vcM ∈ [0, 1], Equation (OA.5) shrinks the range of

feasible vcS ’s to [vS , 1]. Hence, d∗(vS , v
c
S , v

c
M , SS(0)) depends only on vS and vcS and is decreasing

and continuous in vcS—I will denote it as d∗(vS , v
c
S) from now on. Thus, the modified system of

equations reduces to

RS =

∫ 1

vcS

∂

∂vS
Ce(d∗(r, vcS), r)dr.

The RHS is continuous in vcS , as d∗(vS , v
c
S)) is continuous in vcS . For vcS = vS , we have

d∗(vS , v
c
S) ≥ 1 regardless of vS and therefore

∫ 1
0

∂
∂vS

Ce(d∗(r, vcS), r)dr = 1, whereas for vcS = 1,∫ 1
1

∂
∂vS

Ce(d∗(r, vcS), r)dr = 0; thus, a solution to (OA.6) (given RS ∈ (0, 1) ) exists. It is unique,

as d∗(vS , ·) is weakly decreasing for all vS and strictly decreasing for some vS and thus the RHS

crosses RS only once from above.

Abundant jobs If RM+RS ≥ 1, then M = 1 and thus C(vcM , v
c
S) = 0. Hence, min{vcM , vcS} =

0 and I cannot define vcM as a function of vcS , as there is a continuum of vcS ’s for which C(0, vcS) =

6To see this, note that

∆vc
∂

∂vS
d∗(vgS , v

c
S) =

∂
∂vS

πeS(vgS , PS(vgS , v
c
S2))

∂
∂vM

πeM (d∗(vgS , v
c
S2), PM (d∗(vgS , v

c
S1), vcS1))

−
∂
∂vS

πeS(vgS , PS(vgS , v
c
S1))

∂
∂vM

πeM (d∗(vgS , v
c
S1), PM (d∗(vgS , v

c
S1), vcS1))

=

∂
∂vS

πeS(vgS , PS(vgS , v
c
S2))− ∂

∂vS
πeS(vgS , PS(vgS , v

c
S1))

∂
∂vM

πeM (d∗(vgS , v
c
S2), PM (d∗(vgS , v

c
S1), vcS1))

+
∂

∂vS
πeS(vgS , PS(vgS , v

c
S1))

∂
∂vM

πeM (d∗(vgS , v
c
S1), PM (d∗(vgS , v

c
S1), vcS1))− ∂

∂vM
πeM (d∗(vgS , v

c
S2), PM (d∗(vgS , v

c
S1), vcS1))

∂
∂vM

πeM (d∗(vgS , v
c
S1), PM (d∗(vgS , v

c
S1), vcS1)) ∂

∂vM
πeM (d∗(vgS , v

c
S2), PM (d∗(vgS , v

c
S1), vcS1))

.

7For vS = vcS we have ∆SS(0)d
∗(vS , SS(0)) = 0 and ∆SS(0)

∂
∂vS

d∗(vS , SS(0)) < 0. The sign of

∆SS(0)
∂
∂vS

d∗(vS
g, SS(0)) depends on SS1(0) − SS2(0) < 0 and the difference in SS(vS , SS(0)), which is weakly

negative for the same reasons as above. Thus, ∆SS(0)
∂
∂vS

d∗(vS
e, SS(0)) ≤ 0, which implies that d∗(vS , ·) will

never strictly increase.
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0. I address this by defining the set Γc = {(vcM , vcS) : min{vcM , vcS} = 0}, a new variable

a ∈ [−1, 1] and writing vcM and vcS as

vcM (a) =

−a for a ≤ 0,

0 for a > 0,
vcS(a) =

0 for a ≤ 0,

a for a > 0.
(OA.14)

For any a, (vcM (a), vcS(a)) ∈ Γc and for any (vcM , v
c
S) ∈ Γc there exists a unique a, such that

(vcM (a), vcS(a)) = (vcM , v
c
S). Thus, if there exists a unique a that solves Equation (OA.6),

there also exists a unique (vcM , v
c
S) that solves it. Moreover, vcS(a) is continuous and in-

creasing, and vcM (a) is continuous and decreasing. Therefore the function d∗(vS , a, SS(0)) =

d∗(vS , v
c
S(a), vcM (a), SS(0)) is continuous and decreasing (strictly for some vS ’s) in a. Thus, I

can write Equation (OA.6) as

SS(0) =


∫ 1

0
∂
∂vS

Ce(d∗(r, a, SS(0)), r)dr for a < 0,∫ 1
a

∂
∂vS

Ce(d∗(r, a, SS(0)), r)dr for a ≥ 0.

The RHS is continuous in a, as d∗(vS , a, SS(0)) is continuous in a. For a = −1, we have∫ 1
0

∂
∂vS

Ce(d∗(r, a, SS(0)), r)dr = 1; for a = 1, we have
∫ 1
a

∂
∂vS

Ce(d∗(r, a, SS(0)), r)dr = 0; thus,

a solution to (OA.6) (given SS(0) ∈ Θ(1) ) exists. It is unique, as d∗(vS , ·, SS(0)) is weakly

decreasing for all and strictly decreasing for some vS and thus the RHS crosses SS(0) only once

from above.

As d∗(vS , ·, ·) is continuous, a(SS(0)) is continuous as well. It is strictly decreasing in SS(0),

as the LHS is strictly increasing in SS(0) and the RHS is weakly decreasing in SS(0) and

strictly decreasing in a; thus, if SS(0) increases, Equation (OA.6) is met only if a decreases. As

a(SS(0)) is unique and a defines uniquely (vcM , v
c
S), there exist unique vcM (SS(0)) and vcS(SS(0));

the former is non-decreasing and the latter non-increasing; and for any SS2(0) > SS1(0) we have

that vcM (SS2(0)) > vcM (SS1(0)) or vcS(SS2(0)) < vcS(SS1(0)).

The modified set reduces to

SS(0) > 1−RM ⇒ πM

(
uc(SS(0)),

RM − 1 + SS(0)

RM

)
≤ πS

(
vc(SS(0)),

RS − SS(0)

RS

)
(OA.15)

SS(0) < RS ⇒ πM

(
uc(SS(0)),

RM − 1 + SS(0)

RM

)
≥ πS

(
vc(SS(0)),

RS − SS(0)

RS

)
(OA.16)

SS(0) ∈ Θ(1). (OA.17)

Note that vcM (0) = 0, vcS(0) = 1, vcM (1) = 1 and vcS(1) = 0. Condition (OA.15)—(OA.16) will

be trivially met if there exists some SS(0) ∈ Θ(1) such that

πM

(
vcM (SS(0)),

RM − 1 + SS(0)

RM

)
= πS

(
vcS(SS(0)),

RS − SS(0)

RS

)
.

If there is no such SS(0), then it has to be the case that either (a) LHS > RHS for all

SS(0) ∈ Θ(1) or (b) RHS > LHS for all SS(0) ∈ Θ(1). However, (a) is possible only if

max{0, 1 − RM} = 1 − RM , as LHS > RHS for SS(0) = 0 violates condition (d). And for

SS(0) = 1−RM , LHS > RHS meets (OA.15)—(OA.16), as the first inequality doesn’t have to
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hold. For similar reasons, (b) is possible only if min{1, RS} = RS , in which case RHS > LHS

meets (OA.15)—(OA.16). Thus, existence of a solution to (OA.15)—(OA.16) follows. Hence,

there exists a solution to the modified and original sets.

For uniqueness, remember that d∗(vS , a(SS(0)), SS(0)) is unique and, thus, it suffices to show

that the solution to (OA.15)—(OA.16) is unique. Denote the set of all SS(0) ∈ Θ(1) that meet

(OA.15)—(OA.16) as ΩM . Consider min ΩM = SS1(0). Note that SS1(0) exists as ΩM is non-

empty and πM (·, ·), πS(·, ·), vcS(·) and vcM (·) are continuous. Suppose SS1(0) = min{1, RS}—
then the solution is unique. Now suppose that SS1(0) < min{1, RS}, which implies that for any

SS2(0) ∈ ΩM such that SS2(0) > SS1(0) we need to have

πM

(
vcM (SS2(0)),

RM − 1 + SS2(0)

RM

)
≤ πS

(
vcS(SS2(0)),

RS − SS2(0)

RS

)
and for SS1(0) we have:

πM

(
vcM (SS1(0)),

RM − 1 + SS1(0)

RM

)
≥ πS

(
vcS(SS1(0)),

RS − SS1(0)

RS

)
.

This is a contradiction, as ∂
∂vM

πM > 0, ∂
∂hπM ≥ 0, ∂

∂vS
πS > 0, ∂

∂hπS ≥ 0, vcM (·) is weakly

increasing, vcS(·) is weakly decreasing and vcM (SS2(0)) > vcM (SS1(0))∨vcS(SS2(0)) < vcS(SS1(0)).

Thus SS2(0) does not exist and SS1(0) is the only element in ΩM , which completes the proof.

OA.1.1 Sattinger and Roy: Production Functions

Section III.C in the main text has compared the wage functions in my model to the wage

functions that hold in the single-sector assignment model and the Roy’s model. In this section,

for completeness, I compare the production functions in these classes of models.

Denote the vector of skill (vM , vS) by v. Then the overall production function in my model

can be written as ∑
i∈{M,S}

∫
[0,1]3

πi(vi, h) min{Li(v, h),Ki(v, h)}dvdh (OA.18)

where Li(v, h) is the number of workers of type v assigned to a firm of productivity h that

operates in sector i, and must satisfy

∑
i∈{M,S}

∫
[0,1]

Li(v, h)dh ≤ ∂2

∂vM∂vS
C(vM , vS) and Li(v, h) ≥ 0;

whereas Ki(v, h) is the number of sector i firms of productivity i assigned to workers of type

v, and must satisfy ∫
[0,1]2

Ki(v, h)dv ≤ Ri and Ki(v, h) ≥ 0.

First, if RS = 0, then KS(v, h) = 0 and the production function reduces to∫
[0,1]3

πM (vM , h) min{LM (v, h),KM (v, h)}dvdh,

which is the production function in Sattinger (1979).

12

Supplemental Material (not copyedited or formatted) for: Pawel Gola. 2021. "Supply and Demand in a Two-Sector Matching Model." 
Journal of Political Economy 129(3). DOI: https://doi.org/10.1086/712507. 



Second, if ∂
∂hi
πi = 0, and Ri > 1, then all firms are of de facto the same productivity and

there are more of them than there are workers, and thus the production function reduces to

∑
i∈{M,S}

∫
[0,1]2

πi(vi)Li(v),dv

with the usual constraint on Li. This is the production function of a Roy’s economy.

Third, we can now easily compare my model to the Heckman and Sedlacek (1985) model,

in which the production function is

∑
i∈{M,S}

Ui(

∫
[0,1]2

πi(vi)Li(v), dv),

where Ui is increasing and concave. It is clear that while Ui introduces a non-linearity—and

thus imperfect substitution—across sectors, πi(vi) can be interpreted as an efficiency unit of

skill in sector i, and thus workers are perfect substitutes within each sector.

OA.2 Section IV: Further Results

Fall in Concordance and Total Output

Proposition OA.2. Consider two copulas that meet Assumption 3. T (C(θ1)) ≥ T (C(θ2) for

all quadruples (πM , πS , RM , RS) that meet Assumptions 1, 2, and 4 if and only if C(•, θ2) is

more concordant than C(•, θ1).

Proof. The “if” part has been proven in Section IV.A.1: Specifically, it follows from Equations

(15) and (16).

The “only if” part is a simple adaptation of the standard reasoning for first-order stochastic

dominance. Suppose that there exists some (v′M , v
′
S) such that C(v′M , v

′
S , θ1) > C(v′M , v

′
S , θ2).

Then there exists a quadruple (πM , πS , RM , RS) that meets Assumptions 1 and 4 for which

T (C(ρ2)) > T (C(ρ1)). Consider RM = RS = 1 and following surplus functions: πM (vM ) = 0

if vM ≤ v′M and πM (vM ) = 1 otherwise, whereas πS(vS) = 0.5 if vS ≤ v′S and πS(vS) = 1.5

otherwise. Then the efficient assignment of workers to sectors is such that any worker with vM >

v′M and vS < v′S works in manufacturing and all other workers work in services. The measure of

workers in manufacturing is, thus, v′S − C(v′M , v
′
S) and the maximal total surplus produced in

the economy is 1.5(1−v′S)+0.5C(v′M , v
′
S)+1(v′S−C(v′M , v

′
S)) giving 1.5−0.5v′S−0.5C(v′M , v

′
S)

which is then lower for C(v′M , v
′
S , θ1) than C(v′M , v

′
S , θ2), as required.

The proof is not complete yet, as these surplus functions do not meet the differentiabil-

ity assumption. However, they can be approximated by the following pair of surplus func-

tions that meet Assumptions 2 and 3: πM (vM , hM ) = 1
1+exp(−2k(vM−v′M ))

and πS(vS , hS) =
1

1+exp(−2k(vS−v′S))
+ 0.5. As k → ∞ these two functions approach the functions outlined above

pointwise. It follows from the proof of Theorem 1 that the equilibrium is continuous in any

parameters in which the surplus functions are continuous. Thus, it follows by the definition of a

limit and by Assumption 3 that for any difference in copulas C(v′M , v
′
S , θ1)−C(v′M , v

′
S , θ2) > 0

there exists k large enough that T (C(θ2)) ≥ T (C(θ1).
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Note that this result can be trivially generalized to any finite number of sectors.

Derivation of Equation (17)

Differentiating FW (W (t)) = t with respect to θ and rearranging yields

d

dθ
W (t) =

d
dθFW (W (t))
∂
∂xFW (W (t))

(OA.19)

First, as W (t) is the inverse of FW (x) it follows that

W ′(t) =
1

∂
∂xFW (W (t))

. (OA.20)

Second, as FW (x) = C(w−1
M (x), w−1

S (x)) it follows that

d

dθ
FW (W (t)) =

∂

∂θ
C(vM (t), vS(t) +

∑
i∈{M,S}

∂
∂vi
C(vM (t), vS(t))
∂
∂vi
wi(vi(t))

∂

∂θ
wi(vi(t)), (OA.21)

because ∂
∂θw

−1
i (x) =

∂
∂θ
wi(w

−1(x))
∂
∂vi

wi(w
−1
i (x))

and vi(t) = w−1(W (t)). Finally, note that as the density

of all workers occupying rank t must be 1, pi(t)—that is, the probability that a worker that

occupies the tth percentile in the wage distribution works in services—is simply equal to the

density of workers with rank t who work in sector i. Therefore, it follows from Equation (12)

that

pS(t) = lim
h→0

∫ w−1
S (W (t+h))

w−1
S (W (t))

∂
∂vS

C(ψ(r), r)dr

h
=

∂
∂vS

C(vM (t), vS(t))

∂
∂vS

wS(vS(t))
W ′(t), (OA.22)

and analogously for pM (t). Substituting Equations (OA.20)–(OA.22) into Equation (OA.19)

yields Equation (17).

Example: Wage Effect and Polarization

Here I will provide a numerical example demonstrating that the wage effect can lead to an

increase in wage polarization.

Consider a specification of the model with unit measure of firms in each sector and surplus

functions that depend on firm’s type but are not strictly supermodular: πM (vM , hM ) = vM+hM

and πS(vS , hS) = v2
S + hS . Manufacturing is more productive and, thus, employs more workers

in equilibrium.8 As a consequence, the worker with zero skill in each sector prefers to work

in services, as she is matched with a more productive firm in that sector. Wages in services

are wS(vS) = v2
S + 1 − SS(0) and in manufacturing wM (vM ) = vM + SS(0), implying that

wS(1) > wM (1), and hence 1 = pS(1) = pS(0) > pS(t) for t close to 0. As there are overall

more workers in manufacturing it must be the case that pM (t) > pS(t) for some quantiles

t ∈ (0, 1). Suppose further that skills are distributed according to the FGM copula, with

8Suppose not. Then any worker with vM ≥ vS would earn strictly more in manufacturing and, hence,
manufacturing would attract more workers.
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Change Effect The baseline1 Pure
self-selection2 Single-sector3

∂
∂θC > 0

∂
∂θ (W (t)−W (0)), t ≈ 0 > 04 > 05 NA
∂
∂θ (W (1)−W (0)) ≥ 04 =5 NA

∂
∂θ

∂
∂xS

πS > 0,
∂
∂θπS > 06

∂
∂θSS > 0 > 07 =
∂
∂θSM < 0 < 07 NA
∂
∂θ (WS(1)−WS(0)) > 0 > 07 > 08

∂
∂θ (WM (1)−WM (0)) ≥ 0 ≤ 07 NA
∂
∂θW (t)−W (0)), t ≈ 0 < 09 > 07,9 > 08

Table OA.1: Summary (and Comparison) of Comparative Statics Results

Notes: 1Refers to results holding under Assumption 5 (Propositions 1 and 2) 2The Roy specification, with Ri > 1
and ∂

∂hi
πi = 0. 3Refers to the Sattinger specification, with RM = 0. 4If ∂

∂θ
ψ = 0. 5 Follows immediately from

Equation (17). 6The second condition is needed only for Roy’s model. 7Proposition OA.3. 8By inspection of
Equation 8. 9If vcS(θ1) > 0.

C(vM , vS) = vMvS(1 + θ(1− vS)(1− vM )). It can be easily shown that the separation function

is ψ(vS) = v2
S +vcM for vS ≤

√
1− vcM and ψ(vS) = 1 otherwise. Therefore, most of the workers

who are equally skilled in both sectors work in manufacturing. The total number of workers

in services is then SS(0) = 1 −
√

1− vcM +
∫√1−vcM

0 (v2 + vcM )(1 + θ(1 − 2v)(1 − v2 − vcM )dv.

Suppose that originally the two skills are independently distributed (θ = 0), then, because

wM (vcM ) = wS(vcS), SS(0) ≈ 0.44 and vcM ≈ 0.11. By expanding wM (vcM ) = wS(vcS) we

get vcM + SS(0) = 1 − SS(0); differentiating this wrt θ, we get d
dθv

c
M = 2 d

dθSS(0), which can

be further rearranged into: ∂
∂θv

c
M = − 2 ∂

∂θ
SS(0)

(1+2 ∂
∂vc
M
SS(0))

. It is easy to verify that ∂
∂θSS(0) < 0

and ∂
∂vcM

SS(0) > 0, implying ∂
∂θv

c
M > 0 and, thus, d

dθSS(0) < 0. Therefore, an increase

in skill interdependence lowers the overall supply of workers in services and increases it in

manufacturing. Therefore, wages increase for all skill levels in services (by − d
dθSS(0)) and fall

in manufacturing by exactly the same amount. Thus, the wage effect increases the polarization

of wages by Equation 17, as W (0) increases, W (1)−W (0) remains constant, but the wage effect

on W (t) is smaller than on W (0) for t close to 0.

Comparison of the Predictions of This Model, Roy’s Model and Sattinger’s Model

Table OA.1 summarizes the predictions of my model, a single-sector assignment model and

Roy’s self-selection model for the two comparative statics exercises conducted in Section IV.

The results for Roy’s model are proved below.

Proposition OA.3. Suppose that RM , RS > 1 and that ∂
∂hi
πi = 0. If ∂

∂θ
∂
∂xS

πS(vS , hS) > 0

for all (vS , hS) and ∂
∂θπS(0, 0) > 0, then (i) ∂

∂θSS(vS) > 0 for all vS , (ii) ∂
∂θSM (vM ) < 0 for all

vM (iii) ∂
∂θ (WS(1)−WS(0)) > 0 (iv) ∂

∂θ (WM (1)−WM (0)) ≤ 0 and (v) if vcS(θ1) > 0, then there

exists some t̄ ∈ (0, 1) such that ∂
∂θW (t)−W (0)) < 0 for all t ∈ (0, t̄).

Proof. (i) As explained in Section III.C if RM , RS > 1 and ∂
∂hi
πi = 0, then wi(vi) = πi(vi, 0).

∂
∂θ

∂
∂xS

πS(vS , hS) > 0 for all (vS , hS) and ∂
∂θπS(0, 0) > 0 imply that ∂

∂θwS(vS) > 0 for all vS . It
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follows from Equation (11) that ∂
∂θψ(vS) > 0 for all vS ∈ (vcS , v̄S) from which ∂

∂θSS(vS) > 0 for

all vS follows by Equation (12).

(ii) Follows immediately from (i) and Equation (OA.2).

(iii) If RM , RS > 1 then all workers are matched and C(ψ(vcS), vcS) = 0. Together with
∂
∂θψ(vS) > 0 for all vS ∈ (vcS , v̄S) (proof of result (i)) this implies that ∂

∂θv
c
S ≤ 0. As ∂

∂θ (WS(1)−
WS(0)) =

∫ 1
vcS

∂
∂θ

∂
∂vS

πS(r, 0)dr − ∂
∂θv

c
S

∂
∂vS

πS(vcS , 0) the result follows.

(iv) ∂
∂θψ(vS) > 0 for all vS ∈ (vcS , v

∗
S) implies that ∂

∂θφ(vM ) > 0 for all vM ∈ (vcM , v̄M );

it follows by the same reasoning as above that ∂
∂θv

c
M ≥ 0. As ∂

∂θ (WM (1) − WM (0)) =

− ∂
∂θv

c
M

∂
∂vM

πM (vcM , 0) the result follows.

(v) By the same reasoning as in the proof of Proposition 2(vi) we have that pS(0) = 0 and

thus also ∂
∂tpM (0) < 0. As ∂

∂θ (wM (vcM )− wS(vcS)) = − ∂
∂θwS(vcS) < 0 it follows from inspection

of Equation (18) that W ′(0) > 0 and the result follows.

OA.3 Approximating Cobb–Douglas lognormal

Consider the following specification in the canonical form:

πi(vi, hi) = eΦ−1((1−2a)vi+a)σi+µi+αiF (Φ−1((1−2a)hi+a)+µF ) +Ai,

C(vM , vS) = Φρ

(
Φ−1(vM ),Φ−1(vS)

)
,

where a ∈ [0, 1
2). Note that (i) for a ∈ (0, 0.5), πi is well-defined and twice contiguously

differentiable on [0, 1]2, and thus meets all conditions imposed by Assumption 2; and (ii) this

specification reduces to the Gaussian-Exponential specification for a = 0.

OA.4 Specifications Used to Produce Figures

In this section I report the specification used to produce Figures 3 and 5 in the main text, as well

as Figure OA.1 in this appendix. Note that all figures are produced using the CDL specification

of the model, with the truncation parameter a = 0.001 and firm measures RM = RS = 0.5. All

parameters are approximated to three decimal points.

Figure 3

Initial specification: αMC = 0.497, αMN = 0.444, αSC = 0.0, αSN = 0.667, µxC = 0.0, µxN =

0.0, µMF = 22.932, αMF = 0.4, µSF = 22.932, αSF = 0.4 which implies µM = 0.0, µS =

0.0, σM = 0.667, σS = 0.667, ρ = 0.667.

Final specification: αMC = 0.094, αMN = 0.66, αSC = 0.0, αSN = 0.667, µxC = 0.0, µxN =

0.0, µMF = 22.932, αMF = 0.4, µSF = 22.932, αSF = 0.4, which implies µM = 0.0, µS =

0.0, σM = 0.667, σS = 0.667, ρ = 0.99.

Figure 5a

Initial specification: αMC = 0.335, αMN = 0.3, αSC = 0.0, αSN = 0.45, µxC = 0.05, µxN =

0.112, µMF = 6.881, αMF = 1.2, µSF = 6.881, αSF = 1.2, which implies µM = 0.05, µS =
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0.05, σM = 0.45, σS = 0.45, ρ = 0.667.

Final specification: αMC = 0.335, αMN = 0.3, αSC = 0.045, αSN = 0.45, µxC = 0.05, µxN =

0.112, µMF = 6.881, αMF = 1.2, µSF = 6.881, αSF = 1.2, which implies µM = 0.05, µS =

0.053, σM = 0.45, σS = 0.452, ρ = 0.738.

Figure 5b

Initial specification: αMC = 0.55, αMN = 0.0, αSC = 0.55, αSN = 0.002, µxC = 0.0, µxN =

0.0, µMF = 49.63, αMF = 0.2, µSF = 49.63, αSF = 0.2, which implies µM = 0.0, µS = 0.0, σM =

0.55, σS = 0.55, ρ = 1.0.

Final specification: αMC = 0.55, αMN = 0.0, αSC = 0.55, αSN = 0.057, µxC = 0.0, µxN =

0.0, µMF = 49.63, αMF = 0.2, µSF = 49.63, αSF = 0.2, which implies µM = 0.0, µS = 0.0, σM =

0.55, σS = 0.553, ρ = 0.995.

Figure 5c

Initial specification: αMC = 0.312, αMN = 0.95, αSC = 0.0, αSN = 1.0, µxC = 0.0, µxN =

0.0, µMF = 19.915, αMF = 0.4, µSF = 19.915, αSF = 0.4, which implies µM = 0.0, µS =

0.0, σM = 1.0, σS = 1.0, ρ = 0.95.

Final specification: αMC = 0.433, αMN = 0.95, αSC = 0.3, αSN = 1.0, µxC = 0.0, µxN =

0.0, µMF = 19.915, αMF = 0.4, µSF = 19.915, αSF = 0.4, which implies µM = 0.0, µS =

0.0, σM = 1.044, σS = 1.044, ρ = 0.991

Figure OA.1

Initial specification: αMC = 0.745, αMN = 0.667, αSC = 0.0, αSN = 4.0, µxC = 0.0, µxN =

0.0, µMF = 1.934, αMF = 2.0, µSF = −1.174, αSF = 2.0, which implies µM = 0.0, µS =

0.0, σM = 1.0, σS = 4.0, ρ = 0.667

Final specification: αMC = 0.745, αMN = 0.667, αSC = 0.1, αSN = 4.0, µxC = 0.0, µxN =

0.0, µMF = 1.934, αMF = 2.0, µSF = −1.174, αSF = 2.0, which implies µM = 0.0, µS =

0.0, σM = 1.0, σS = 4.001, ρ = 0.685.

OA.5 Formal Results for Section VI

OA.5.1 General Comparative Statics Result

I will start by providing a very general comparative statics result, which will be then used to

derive the specific results discussed in Sections OA.5.2 and OA.5.3. This result is a generalization

of Proposition 2 (i) and (ii)—however, the proof does not rely on differentiability of ψ and GS

with respect to θ.

To simplify what follows, I first introduce new notation. The difference between the new

and old values of any object O is denoted as ∆θO. The greater of the old and new values of O

is denoted as maxO. Thus, for instance, the change in the measure of manufacturing workers

is denoted by ∆θSM (0) and the greater critical skill in services is denoted by max vcS .
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Figure OA.1: Sector-Specific TC: Rise in αSC

Notes: Figure OA.1 depicts the effect of an increase in αSC on the inverse distribution of log wages (i.e., W (t)).

Definition OA.4. Vertical differentiation in services increases by (strictly) more than in man-

ufacturing if, for all (vS , h):

ψvS (vS ; θ2)∆θ
∂

∂vM
πM (ψ(vS ; θ2), PM (ψ(vS); θ2)) ≤ (<)∆θ

∂

∂vS
πS(vS , PS(vS ; θ2)).

Note that a services-specific increase in vertical differentiation (Definition 4) implies trivially

that vertical differentiation increased by more in services than in manufacturing.

Definition OA.5. The matching problems (Q(θ1), Q(θ2)) have (strong) impossibility property

if it is impossible that vcS(θ2) > (≥)vcS(θ1) and ∆θSS(0) < (≤)0.

Theorem OA.1. Suppose (Q(θ1), Q(θ2)) exhibit the impossibility property, RM (θ2) ≤ RM (θ1)

and RS(θ2) = RS(θ1). If vertical differentiation increases by more in services than manufac-

turing then (i) SM (vM ; θ2) ≤ SM (vM ; θ1) for all vM and (ii) SS(vS ; θ2) ≥ SS(vS ; θ1) for all

vS . If the impossibility property is strong, then (i) holds strictly for a positive measure of

vM and (ii) for a positive measure of vS . If the increase in differentiation is strict, then (iii)

SM (vM ; θ2) < SM (vM ; θ1) for all vM ∈ [max vcM ,max v̄M ) and (iv) SS(vS ; θ2) > SS(vS ; θ1) for

all vS ∈ [max vcS ,max v̄S).

Proof of Theorem OA.1. The results for services are proved in a series of lemmas and the result

for manufacturing follow easily (details at the end of the proof). But first, I define the following

three sets of services talent levels

Ξ0 = {vS ∈ [max vcS ,min v̄S ] : SS(vS ; θ2) ≤ SS(vS ; θ1)}

Ξ1 = {vS ∈ [max vcS ,min v̄S ] : ψ(vS ; θ2) > ψ(vS ; θ1) ∧ SS(vS ; θ2) < SS(vS ; θ1)}

Ξ2 = {vS ∈ [max vcS ,min v̄S) : ψ(vS ; θ2) ≥ ψ(vS ; θ1) ∧ SS(vS ; θ2) ≤ SS(vS ; θ1)}

as well as the function κ : [max vcS ,min v̄S ]→ R:

κ(vS) = ∆θwS(vS)−∆θwM (ψ(vS ; θ2)).
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Lemma OA.2. For all vS ∈ [max vcS ,min v̄S ], if ∆θSS(vS) ≤ (<)0 then ∆θSM (ψ(vS ; θ2)) ≥ (>

)0. Similarly, if ∆θSS(vS) ≥ (>)0 then ∆θSM (ψ(vS ; θ1)) ≥ (>)0.

Proof. From Equation (OA.2) and Lemma 2 follows that

∆θSM (ψ(v; θ2)) = −∆θSS(v)

−
[ ∫ ψ(v;θ2)

ψ(v;θ1)

∂

∂vM
C
(
r, v)

)
dr −

∫ ψ(v;θ2)

ψ(v;θ1)

∂

∂vM
C
(
r, φ(r; θ1)

)
dr
]
.

If ψ(vS ; θ2) ≥ ψ(vS ; θ1) then for any r ∈ [ψ(vS ; θ1), ψ(vS ; θ2)], φ(r; θ1) ≥ vS and my claim

follows. If ψ(vS ; θ2) < ψ(vS ; θ1) then for any r ∈ [ψ(vS ; θ2), ψ(vS ; θ1)], φ(r; θ1) < vS and my

claim follows as well. The second statement follows from an analogous reasoning.

Lemma OA.3. Suppose that vertical differentiation increases by (strictly) more in manufac-

turing than services. Then ∂
∂vS

κ(vS) ≥ (>)0 for all vS ∈ Ξ0.

Proof of Lemma OA.3. Take any vS0 ∈ Ξ0 and note that by Lemma OA.2 we have ∆θPM (ψ(vS0; θ2)) ≤
0. Then we have

∆θ
∂

∂vM
wM (ψ(v0; θ2)) = ∆θ

∂

∂vM
πM (ψ(v0; θ2), PM (ψ(v0; θ2)))

+

∫ PM (ψ(v0;θ2);θ2)

PM (ψ(v0;θ2);θ1)

∂2

∂vM∂h
πM (ψ(v0; θ2), r; θ2)dr,

and

∆θ
∂

∂vS
wS(vS0) = ∆θ

∂

∂vS
πS(vS , PS(vS ; θ2)) +

∫ PS(vS0;θ2)

PS(vS0;θ1)

∂2

∂vS∂h
πS(vS0, r)dr ≥ 0,

By differentiating Equation (11) wrt to v for both θ2 and θ1, taking differences and rearranging,

we arrive at

∂

∂vS
κ(vS) =

[
∆θ

∂

∂vS
wS(vS0)− ψvS (vS0; θ2)∆θ

∂

∂vM
wM (ψ(vS0; θ2)

]
≥ (>)0,

because vertical differentiation increases by more in services than manufacturing, πM , πS are

supermodular, ∆θPM (ψ(vS0; θ2)) ≤ 0 and ∆θPS(vS0) ≥ 0.

Lemma OA.4. Suppose that ∂
∂vS

κ(vS) ≥ (>)0 for all vS ∈ Ξ0. Then for any v1 ∈ Ξ1(Ξ2) it is

the case that (v1,min v̄S ] ⊂ Ξ1.

Proof of Lemma OA.4. First, note that κ(vS) =
∫ ψ(vS ;θ1)
ψ(vS ;θ2)

∂
∂vS

πM (r, P (r; θ1); θ1)dr. Because
∂
∂vS

πM > 0 it follows that sgn(∆θψ(vS)) = sgn(κ(vS)). In particular, this means that κ(v1) >

(≥)0. Second, define the set Ξ3 = {vS ∈ [v1,min v̄S ] : vS 6∈ Ξ1}.
I will first show the result for v1 ∈ Ξ1. Suppose Ξ3 is non-empty—then continuity of ψ

and SS implies that min Ξ3 exists; clearly min Ξ3 > v1. Further, [v1,min Ξ3] ⊂ Ξ0. Therefore,

κ(vS) > 0 for all v ∈ [v1,min Ξ3], which (together with κ(v1) > 0) implies that κ(vS) > 0 and
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thus also ∆θψ(vS) > 0 v ∈ [v1,min Ξ3]. However, the last fact implies that

∆θSS(v1) = ∆θSS(min Ξ3) +

∫ min Ξ3

min v1

∫ ψ(r;θ2)

ψ(r;θ1)

∂2

∂vM∂vS
C(s, r)dsdr > 0,

and v1 6∈ Ξ1; contradiction!

Now suppose that v1 ∈ Ξ2. By continuity of κ and the fact that ∂
∂vS

κ(v1) > 0, there

must exist some v2 > v1 such that for all vS ∈ [v1, v2] we have ∂
∂vS

κ(v1) > 0. It follows that

κ(vS) > 0 and ∆θψ(vS) > 0 for all vS ∈ (v1, v2], from which follows that ∆θ3SS(vS) < 0 for all

vS ∈ (v1, v2]. Therefore, (v1, v2] ⊂ Ξ1; by the reasoning above follows that [v2,min v̄S ] ⊂ Ξ1;

combining these two completes the proof.

Lemma OA.5. Suppose that for any v1 ∈ Ξ2(Ξ1) it is the case that [v1,min v̄S ] ∈ Ξ1. Then

Ξ2 (Ξ1) is empty.

Proof of Lemma OA.5. Take any vS1 ∈ Ξ2(Ξ1). This implies that ∆θψ(vS) > 0 for all vS ∈
[vS1,min v̄S ], which implies that v̄S(θ2) < v̄S(θ1). ∆θSS(vS1) can be expanded into:

∆θSS(vS1) =

∫ v̄S(θ2)

vS1

∂

∂vS
C(ψ(vS ; θ2), vS)dvS −

∫ v̄S(θ1)

vS1

∂

∂vS
C(ψ(vS ; θ1), vS)dvS −∆θv̄S

=

∫ v̄S(θ1)

vS1

∫ ψ(vS ;θ2)

ψ(vS ;θ1)

∂2

∂vM∂vS
C(s, vS)dsdvS −

∫ v̄S(θ2)

v̄S(θ1)
1− ∂

∂vS
C(ψ(vS ; θ2), vS)dvS .

The LHS is (strictly) negative, whereas the RHS is strictly positive—contradiction. Thus Ξ2(Ξ1)

must be empty, as required.

Lemma OA.6. Suppose Ξ1 is empty. Consider some vSe ∈ [max vcS ,min v̄S ]. Then ∆θSS(vSe) ≥
0 implies ∆θSS(vSe) ≥ 0 for all vS ∈ [vSe,min v̄S ]. If Ξ2 is empty, then additionally ∆θSS(vSe) >

0 implies ∆θSS(vSe) > 0 for all vS ∈ [vSe,min v̄S).

Proof. I will start with the first claim. Suppose it is false. Then the set Υ1 = {vS ∈
[vSe,min v̄S ] : ∆θSS(vS) < 0} has to be non-empty. Take some vS

1 ∈ Υ1 and define Υ2 =

{vS ∈ [vSe, vS1] : ∆θSS(vS) ≥ 0}. By continuity of ∆θSS(vS) the point vS
2 = max Υ2 exists

and is < vS
1. Therefore, for any vS ∈ (vS

2, vS
1] we have ∆θSS(vS) < 0. However, as:

∆θSS(vS
1) = ∆θSS(vS

2)−
∫ vS

1

vS2

∫ ψ(r;θ2)

ψ(r;θ1)

∂2

∂vM∂vS
C(s, r)dsdr,

this implies that there exists some vS1 ∈ (vS
2, vS

1] such that ∆θψ(vS1) > 0 and thus vS1 ∈ Ξ1—

contradiction.

Let us move to the second claim. Again, suppose it is false. Then the set Υ3 = {vS ∈
[vSe,min v̄S ] : ∆θSS(vS) ≤ 0} has to be non-empty; but as ∆θSS(vS) is continuous in v, the

non-emptiness implies that vS
3 = min Υ3 exists. Additionally, vS

3 > vSe, as ∆θSS(vSe) > 0.

Define a new set Υ4 = {vS ∈ [vSe, vS
3] : ∆θψ(vS) ≥ 0} and vS

4 = max Υ4; by definition of

vS
3, for any vS > vS

3∧ ∈ Υ4 we have that ∆θSS(vS) > 0. As [vSe, vS
3] is a compact set

and ∆θψ(vS) is continuous vS
4 won’t exist only if Υ4 is empty; but an empty Υ4 implies that

20

Supplemental Material (not copyedited or formatted) for: Pawel Gola. 2021. "Supply and Demand in a Two-Sector Matching Model." 
Journal of Political Economy 129(3). DOI: https://doi.org/10.1086/712507. 



∆θψ(vS) < 0 for any vS ∈ [vSe, vS
3], which in turn means that ∆θSS(vS

3) > 0, which contradicts

the definition of vS
3. Therefore vS

4 needs to exist. Now suppose that vS
4 < vS

3; then we have

∆θSS(vS
4) > 0 and for any vS ∈ (vS

4, vS
3],∆θψ(vS) < 0, which implies that ∆θSS(vS

3) > 0

and also contradicts the definition of vS
3. Therefore it has to be the case that vS

3 = vS
4; but

this implies that ∆θ(ψ(vS
3)) ≥ 0 and ∆θSS(vS

3) ≤ 0, which contradicts emptiness of Ξ2.

Lemma OA.7. ∆θSS(min v̄S) ≥ 0 implies that (i) for any vS > max v̄S we have ∆θSS(vS) ≥ 0

and (ii) for all vS ∈ [min v̄S ,max v̄S) we have ∆θSS(vS) > 0.

Proof. Note that ∆θSS(min v̄S) > (≥)0 implies that v̄S(θ2) < (≤)v̄S(θ1)9. Thus, if ∆θSS(min v̄S) =

0 then min v̄S = max vcS and the second claim follows trivially. Whereas if ∆θSS(min v̄S) > 0

then v̄S(θ2) < v̄S(θ1) and by the fact that all agents with vS ∈ (v̄S , 1] join services for sure it

follows that for vS ∈ (v̄S(θ1), v̄S(θ2)) we also have ∆θSS(vS) > 0. Claim (i) for vS > max v̄S

follows easily from the aforementioned property of v̄S .

Lemma OA.8. The (strong) impossibility property implies that if vcS(θ2) > (≥)vcS(θ1) then

∆θSS(vcS(θ2)) > 0.

Proof. This follows from the fact that ∆θv
c
S > (≥)0 implies that ∆θGS(vcS(θ1)) < (≤)0, the

fact that:

∆θSS(vS) =
(
1− (GS(vS ; θ2)

)
∆θSS(0)− SS(0; θ1)∆θGS(vS) (OA.23)

and the fact that vcS(θ1) < 1 and thus 1−GS(vS ; θ2) > 0.

Lemma OA.9. Empty Ξ1 and the impossibility property jointly imply ∆θSS(max vcS) ≥ 0. If

either the increase in vertical differentiation is strict or the property is strong then this inequality

holds strictly.

Proof. Suppose (strong) impossibility property holds. Define a set Ξ5 = {vS ∈ [max vcS ,max v̄S) :

∆θψ(vS5) > 0 and ∆θSS(vS5) ≤ 0}. By continuity, there has to exist some arbitrarily small

ε > 0 such that vS5 + ε ∈ Ξ1; thus, by Lemma OA.5, an increase in vertical differentiation

implies that Ξ5 has to be empty.

If vcS(θ2) > (≥)vcS(θ1), then by Lemma OA.8 we have ∆θSS(max vcS) > 0. If vcS(θ2) ≤ vcS(θ1)

and max vcS ≥ min v̄S , then—as v̄S > vcS—it has to be that v̄S(θ1) > vcS(θ1) ≥ v̄S(θ2). But as

all agents with vS > v̄S join services, this implies ∆θSS(vcS(θ2)) > 0.

Thus, we only need to show the result for max vcS < min v̄S and vcS(θ2) ≤ (<)vcS(θ1). As

∆θRM ≤ 0 we have C(vcM (θ1), vcS(θ1)) ≤ C(vcM (θ2), vcS(θ2)) and thus ∆θv
c
S ≤ (<)0 implies

∆θv
c
M ≥ 0. As ψ(vcS) = vcM and ψ(vS) is strictly increasing for any θi, we have: ψ(vcS(θ1); θ2) ≥

(>)vcM (θ2), vcM (θ2) ≤ vcM (θ1) and vcM (θ1) = ψ(vcS(θ1); θ1), which trivially implies that

∆θψ(vcS(θ1)) ≥ (>)0.

9 To see this, denote the θj for which v̄S(ci) = max v̄S as θm; then we have

∆θSS(min v̄S ; θ1) =

∫ v̄S(θ1)

v̄S(θ2)

1− ∂

∂vS
C(ψ(vS , cm), vS)dvS .

As 1 − ∂
∂vS

C(ψ(vS , cm), vS) ≥ 0, the fact that ∆θSS(min v̄S) > (≥)0 implies that for this to hold we need

v̄S(θ2) < (≤)v̄S(θ1).
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If this inequality holds weakly, then empty Ξ1 implies ∆θSS(vcS(θ1)) ≥ 0. If ∆θψ(vcS(θ2)) > 0

(i.e. when the impossibility property is strong), then—as Ξ5 is empty—∆θSS(max vcS) > 0. If

Ξ2 is empty, then ∆θψ(vcS(θ2)) ≥ 0 implies ∆θSS(max vcS) > 0, which concludes the proof.

Lemma OA.10. Empty Ξ1 and impossibility properties imply jointly that for any vS > max vcS ,

∆θSS(vS) ≥ 0.

Proof. Suppose ∆θv
c
S > 0—then for all vS > max vcS we have that ∆θGS(vcS(θ1)) ≤ 0 and by

impossibility property that ∆θSS(0) ≥ 0. Thus, the claim follows from Equation (OA.23). Now

suppose that ∆θv
c
S ≤ 0. This implies that for any vS ≤ vcS(θ2) it is the case that ∆θGS(vcS(θ2)) =

GS(vS ; θ2) ≥ 0 and this expression is increasing in v. As by Lemma OA.9 ∆θSS(vcS(θ1)) ≥ 0 it

follows from Equation (OA.23) that ∆θSS(vS) ≥ 0 for all vS < max vcS , as required. Note that

this implies also that ∆θSS(0) = ∆SS(0) ≥ 0.

All results for services follow easily from Lemmas OA.3, OA.4, OA.5, OA.6, OA.7, OA.9 and

OA.10 as well as continuity of ∆θSS(·). As Lemma OA.7 has an exact manufacturing analogue,

the manufacturing results for vM ≥ max vcM follow from services results and Lemma OA.2. The

results for vM < max vcM follow from reasoning analogous to that in proof of Lemma OA.10

once we note that ∆θSS(0) ≥ 0 implies ∆θSM (0) ≤ 0.

OA.5.2 Scarce and Abundant Jobs

This section provides the formal results on which the discussion in Section VI.A is based.

Scarce Jobs Case

Changes in Concordance In the scarce jobs case, only the results concerning changes in

the difference between the wages earned by highest and lowest earning workers are certain to

survive.

Proposition OA.4. Suppose that RM + RS ≤ 1, the concordance of the skill distribution

increases regularly, and Equation (19) holds. Then (i) W (1) − W (0) increases (strictly if
∂2

∂vi∂h
πi > 0 for i ∈ {M,S}).

Proof. If jobs are scarce, then wi(v
c
i ) = 0. Thus, the change in W (1) −W (0) is equal to the

change in max{wM (1), wS(1)}. It follows from Equations (19) and (OA.2) that 0 ≤ ∂
∂θ

∂
∂vi
wi(vi)

for all vi ∈ [vci , v̄i]. Therefore, the increase in wi(1) follows by inspection of Equation 8 and the

definition of v̄i.

The impact on lower-tail inequality is ambiguous. The intuition is that while the forces

causing a fall in lower-tail inequality are still present, they might operate exclusively on the

part of the wage distribution that is occupied by workers that earn reservation wages. To see

this, suppose that the two sectors are symmetric; for t ≥ 1− 2RS Equation (20) becomes then

d

dθ
W (t) ≤ −W ′(t) ∂

∂θ
C(vM (t), vS(t))︸ ︷︷ ︸
(1)<0

+

∫ vS(t)

vcS

∂

∂θ

C(s, s)

RS

∂2πS(s, C(s, s))

∂vS∂hS
ds︸ ︷︷ ︸

(2)>0

− ∂

∂θ
vcS
∂πS(vcS , 0)

∂vS︸ ︷︷ ︸
(3)>0
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We cannot conclude that this expression is negative for two reasons. First, the regularity

condition ensures only that ∂
∂θC(vM (t), vS(t)) is increasing for some t close to 0, and thus it

may be decreasing for t ≥ 1 − 2RS . Thus, this expression cannot be bound from above in the

same way as Equation (20). Second, there is the additional term (3) on the RHS that is part

of the wage effect and is finite for all t ≥ 1 − RM − RS . In other words, for the skill levels for

which workers start earning ‘non-reservation’ wages, the wage effect has already accumulated,

and there is no guarantee that the composition effect dominates.

Changes in Surplus Again, all the results concerning upper-tail wage inequality survive,

but the results concerning lower-tail inequality become ambiguous.

Proposition OA.5. Suppose RM + RS < 1 and workers in services become more vertically

differentiated, then (i) GS(vS) falls for all vS and (ii) GM (vM ) increases for all vS . As a

consequence, (iii) ∂
∂vM

wM (vM ) increases for all vM ≥ vcM (θ1) and (iv) WM (1)−WM (0) increases.

In services, (v) WS(1)−WS(0) increases by more than WM (1)−WM (0).

Proof. (i) and (ii) In the scarce jobs case ∆θSS(0) = 0 and thus the impossibility property

(Definition OA.5) is satisfied; the result follows from Theorem OA.1 and the fact that, if RM +

RS < 1, then Gi(vi) = 1− Si(vi)
Ri

.

(iii) Follows immediately from (ii) by inspection of Equation (8).

(iv) ∂
∂θv

c
M ≤ 0 by (ii) and (iv) follows by inspection of Equation (8). (v) I will start by

showing that ∆v̄M ≥ 0, ∆v̄S ≤ 0, with at least one of these holding strictly. The first part

follows trivially from Theorem OA.1 and Lemma OA.7. Suppose ∆v̄S = 0; consider the set

ΩT = {vS ∈ [max vcS ,min v̄S ] : ∆ψ(vS) > 0} and its minimum vS
5. Suppose vS

5 6= min v̄S .

By Theorem OA.1 we have then that ∆SS(v5
S) > 0, which implies ∆SS(min v̄S) > 0, and thus

∆v̄S < 0—contradiction. Therefore, if ∆v̄S = 0, then ∆ψ(min v̄S) > 0, which implies ∆v̄M > 0.

It follows that

wS(v̄S(θ1); θ2) ≥ wS(v̄S(θ2); θ2) = wM (v̄M (θ2); θ2) ≥ wM (v̄M (θ1); θ2)

wM (v̄M (θ2); θ1) ≥ wM (v̄M (θ1); θ1) = wS(v̄S(θ1); θ1) ≥ wS(v̄S(θ2); θ1)

with at least one inequality holding strictly, which trivially implies

wS(v̄S(θ1); θ2)wS(v̄S(θ2); θ1) > wM (v̄M (θ1); θ2)− wM (v̄M (θ2); θ1). (OA.24)

Thus, wM (v̄M (θ1)) increases strictly. For any vi > v̄i we have that

wi(vi) =

∫ vi

v̄i

∂

∂vi
πi(r,Gi(r))dr + wi(v̄i(θ1)). (OA.25)

For vi > v̄i(θ1), GM (vi) does not change; and as surplus’ spread implies that ∂
∂vS

πS(vS , h)

strictly increases, it follows that wS(1) increases by more than wM (1); the result follows as

Wi(0) = 0.

The change in lower-tail inequality is ambiguous even if vcS(θ1) > vcM (θ1) because the change

in lower-tail within-sector wage inequality (Term (1) in Equation (18)) is non-zero in the scarce
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jobs case. In particular,

pS(1−RM −RS) =

∂
∂vS

C(vcM , v
c
S)

∂
∂vS

wS(vcS))
W ′(1−RM −RS) > 0

and ∂
∂θ

∂
∂vM

wM (vM (0)) = − ∂
∂θv

c
M

∂
∂vM

C(vcM ,v
c
S)

RM
∂2

∂vM∂hM
πM (vcM , GM (vcM )) ≥ 0. While between-

sector lower-tail inequality still falls, we cannot be certain anymore that this fall dominates the

increase in within-sector inequality.

Abundant Jobs Case

In the main text I have claimed (Equation (23)) that the change in the inverse distribution of

wages can be decomposed into the baseline effect and the size effect. To see that the effect of a

change in selection that leaves Si(0) unchanged really is the same as in the baseline model, note

that Pi(vi) ≡ 1−Si(vi)/Ri = Si(0)
Ri

Gi(vi)+1−Si(0)
Ri

and thus the impact on wages a change from θ3

to θ2 is the same as the impact of a change from πS(vi, hi; θ4) = πS(vi, hi
RS(θ1)
Si(0;θ3) +1− RS(θ1)

Si(0;θ3) ; θ3)

to πS(vi, hi; θ5) = πS(vi, hi
RS(θ1)
Si(0;θ3) + 1 − RS(θ1)

Si(0;θ3) ; θ2) in a model in which RM = SM (0; θ3) and

RS = SS(0; θ3).

Changes in Concordance In the abundant jobs case the results with respect to changes in

skill concordance carry through unchanged because (a) if ∂
∂hi
πi(v

c
i , 1−

Si(0;θ)
Ri

) > 0 in at least one

sector, then Equation (19) necessitates that Si(0) remains constant, and thus that there is no size

effect and (b) otherwise, the lowest wage is unchanged. The former is easiest to see in the case of

strictly supermodular surplus ∂2

∂vi∂hi
πi > 0, as then ∂2

∂θ∂vi
wi(v

c
i ) = − ∂

∂θ
Si(0)
Ri

∂2

∂vi∂hi
πi(v

c
i , Pi(v

c
i )),

and thus by differentiating Equation (19) and by SM (0) + SS(0) = 1 follows that ∂
∂θSi(0) = 0.

Proposition OA.6. Suppose that RM +RS > 1, then the concordance of the skill distribution

increases regularly, and Equation (19) holds. Then (i) wage polarization increases in both

absolute and relative terms, with both W (t) −W (0) and logW (t) − logW (0) falling strictly

for some t ∈ (0, t̄). In addition, (ii) if ∂2

∂vi∂h
πi > 0 for i ∈ {M,S}, then W (1) − W (0) and

logW (1)− logW (0) increase strictly.

Proof. (i) The proof for changes in absolute terms is analogous to the proof of Proposition 1,

with Equation (OA.2) yielding

∂

∂θ
PM (vM ) =

1

RM

∂

∂θ
(C(vM , ψ(vM ))−RSP (vS)) .

which (together with Equation (19)) implies that

0 ≤ ∂

∂θ

∂

∂vS
wS(vS) ≤ ∂2

∂vS∂hS
πS(vS , PS(vS)))

∂

∂θ

C(ψ(vS), vS)

RS

and thus—substituting Equation19 into Equation (17)—we have that

d

dθ
(W (t)−W (0)) ≤ ∂

∂θ
C(vS(t), vS(t))

[ ∫ vS(t)

vcS

1

RS

∂2

∂vS∂hS
πS(s, PS(s)) ds−W ′(t)

]
< 0.
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for t ≈ 0 and thus the result follows.

For changes in relative terms, it suffices to show what happens to the lowest wage in the

economy wi(v
c
i ). First, note that if Si(0; θ) < Ri for both i then wi(v

c
i ; θ) = πi(v

c
i , 1 −

Si(0;θ)
Ri

).

Thus, because SM (0) + SS(0) = 1 it follows from Equation (19) that either ∂
∂θSi(0) = 0 or

∂
∂hi
πi(v

c
i , 1 −

Si(0;θ)
Ri

) = 0 in both sectors; in either case, the lowest wage remains unchanged.

Suppose, instead that SM (0; θ) = RM , in which case wi(v
c
i ; θ) = πM (vcM , 1−

SM (0;θ)
RM

). However,

as ∂
∂θSM (0; θ) = SM (0; θ2) − SM (0; θ1), if ∂

∂θSi(0; θ) < 0 then SM (0; θ) < RM for all θ ∈ (0, 1];

contradiction! It follows that wi(v
c
i ) is unchanged and the result follows.

(ii) follows by the same reasoning as Proposition 1 (ii).

Changes in Surplus If jobs are abundant (RM +RS > 1), the level of surplus plays a role in

determining whether a firm hires any worker at all or exits the market, that is, in determining

the extensive margin of a firm’s hiring decision. In particular, if there is no change in workers’

vertical differentiation in services but the level of surplus falls, then some low-productivity

services firms will likely decide to leave the market, which will shift the demand for services

skill downward. To address this, in this section I focus on changes in surplus that both increase

workers’ vertical differentiation and increase the levels of surplus.

Definition OA.6 (Increase in Levels). The level of surplus produced in services increases

universally if, for all (vS , hS) ∈ [0, 1]2, πS(vS , hS ; θ2) ≥ πS(vS , hS ; θ1).

Proposition OA.7. If (a) RM +RS > 1, (b) surplus levels in services increase universally, and

(c) services workers become more vertically differentiated, then more skill is supplied to services

and less to manufacturing in equilibrium (SS(vS) increases and SM (vM ) falls for all vi).

Proof. Suppose the impossibility property does not hold, and thus ∆θSS(0) < 0, ∆θv
c
S > 0

which implies ∆θSM (0) > 0 and ∆θv
c
M ≤ 0. Denote Pi(v

c
i ) by hci . It follows trivially that

∆θh
c
M < 0 and ∆θh

c
S > 0. ∆θSM (0; θ1) > 0 implies SM (0; θ1) < RM ; ∆θSS(0) < 0 implies

RS > SS(0; θ2), and thus from (OA.8)—(OA.9) in the proof of Theorem 1 follows that:

πS(vcS(θ2), hcS(θ2); θ2) ≤ πM (vcM (θ2), hcM (θ2)) (OA.26)

πM (vcM (θ1), hcM (θ1)) ≤ πS(vcS(θ1), hcS(θ1); θ1). (OA.27)

Given that ∂
∂vM

πM > 0 and ∂
∂hπM ≥ 0, we have that RHS of (OA.26) is less than the

LHS of (OA.27) and therefore πS(vcS(θ2), hcM (θ2); θ2) ≤ πS(vcS(θ1), hcM (θ1); θ1). However, as

∆θπS(vcS(θ1), hcS(θ1)) ≥ 0, ∂
∂vS

πS > 0 and ∂
∂hπS ≥ 0 this is impossible and the impossibility

property holds; the result follows from Theorem OA.1.

Let us again consider the change in services firms’ hiring decisions after the surplus function

has changed but before wage functions have adjusted. By the logic outlined in Section IV.B,

every firm will want to hire a more skilled worker than previously. Additionally, some firms

that did not find it profitable to hire anyone previously will now decide to hire a low-skilled

worker, because of the increase in surplus levels. Thus again the demand for skill in services

shifts upward, which draws in additional workers from manufacturing, so that employment rises
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in services and falls in manufacturing.10 Note that this time some of those additional workers

could be of low skill, as the increase in surplus levels implies that services generally becomes

more productive relative to manufacturing.

As I explained in the main text, the change in overall inverse distribution of wages (or, in

fact, the change in any outcome) can be decomposed into the baseline and size effects (Equation

(23)). The size effect is defined as the effect o a change from the original specification to an

intermediate specification, in which the gradient of the surplus function is the same as initially,

but Si(0) are as in the final equilibrium. As SS(0; θ2) ≥ SS(0; θ1)) it follows from Proposition

OA.7 that the intermediate specification must shift surplus in services upward by a constant

compared to the initial specification.

Proposition OA.8. Suppose that RM + RS > 1 and that πM (θ2) = πM (θ1) + C1 for some

C1 ≥ 0. Then (i) ∂
∂vS

wS(vS) ≤ 0 falls for all vS and ∂
∂vM

wM (vM ) ≥ 0 increases for all vM (ii)

∆θwS(vS) ≥ ∆θwM (ψ(vS)) ≥ 0 for all vS ∈ [max vcS ,min v̄S ] and (iii) if vcS(θ2) > 0 then W ′(0)

increases.

Proof. (i) Follows immediately by Proposition OA.7 and inspection of Equation (7).

(ii) First, note that as ∂
∂vi
πi is unchanged for both i, it is both the case that vertical

differentiation increases by more in services than in manufacturing and that it is increases by

more in manufacturing than in services. Due to the latter it follows from Lemma OA.5 and

Proposition OA.7 that ∆θψ(vS) ≥ 0 for all vS ∈ [max vcS ,min v̄S ].

(iii) First, it follows from (i) that vcS(θ2) ≤ vcS(θ1). From the fact that FW (W (t)) = t follows

W ′(0) =
1

∂
∂vM

C(vcM ,v
c
S)

∂
∂vM

πM (vcM ,PM (vcM ))
+

∂
∂vS

C(vcM ,v
c
S)

∂
∂vS

πS(vcS ,PS(vcS))

=

∂
∂vM

πM (0, PM (0))

∂
∂vM

C(0, vcS)
,

because 0 = vM (θ2) ≥ vM (θ1). The numerator increases due to (i) and the denominator falls

due to vcS(θ2) ≤ vcS(θ1), and the result follows.

OA.5.3 Formal Results for Section VI.B

In this Section I provide the formal results and definitions on which the discussion in Section

VI.B is based.

Equilibrium

Definition OA.7 (Competitive Equilibrium). An equilibrium consists of sectoral skill supply

functions SM , SS , sectoral skill demand functions DM , DS , and sectoral wage functions wM , wS

that satisfy conditions (i)–(iii) from Definition 1, as well as (iv) two sectoral measures of firms,

RM , RS ∈ R≥0, such that r̄i = ci if Ri > 0 and r̄i ≤ ci otherwise.

10The increase (fall) in services’ (manufacturing’) employment follows immediately from the increase (fall) in
skill supply.
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It follows that any equilibrium of the extended model must also be an equilibrium of the

baseline model.11 Formally, denote by EB the set of all such worker and firm allocation quadru-

ples E = (SM , SS , RM , RS) such that the supply functions (SM , SS) hold in an equilibrium of

the baseline model if the sectoral firm measures are RM , RS ∈ R≥0.12 For any RM , RS > 0,

the corresponding SM , SS were characterized in Section III. If Ri = 0, then Si(v) = 0 and

Sj(v) = min{1− v,Rj} in any equilibrium of the baseline model.13

Analogously, denote by EE the set of all quadruples E = (SM , SS , RM , RS) such that SM , SS

are the supply functions and RM , RS the sectoral firm measures that hold in an equilibrium of

the extended model. Clearly, E ∈ EE if and only if E ∈ EB and satisfies condition (iv) from

Definition OA.7.

Existence and Uniqueness In order to show existence and uniqueness of the equilibrium,

it will be useful to first show that results analogous to the two Fundamental Welfare Theorems

hold in the extended model.

It has been known since at least Gretsky, Ostroy, and Zame (1992) that in an assignment

model (such as the baseline model from Section III) any equilibrium is efficient and any efficient

assignment is an equilibrium. The extended model presented here, however, is not a special case

of the model in Gretsky et al. (1992), and thus efficiency of equilibria needs to be established

separately.

Total gross surplus produced in sector i in equilibrium E ∈ EB is equal to the sum of

surpluses produced by all workers who joined sector i, taking into account that within-sector

matching is positive and assortative:

Ti(E) =

0 if Ri = 0,∫ 0
1 πi

(
vi, 1− Si(vi)

Ri

)
dSi(vi) otherwise.

(OA.28)

The total net surplus produced in the economy is equal to the sum of the gross surplus produced

in the two sectors net of entry costs: V (E) = TM (E) + TS(E)− cMRM − cSRS .

Proposition OA.9. A worker and firm allocation E ∈ EB can hold in an equilibrium of the

extended model if and only if it uniquely maximizes the total net surplus, that is,

E∗ ∈ EE ⇔ V (E∗)− V (E′) > 0 for all E ∈ EB \ {E∗}.

Proof. The proof will consist of three steps. First, I will prove that

E∗ ∈ EE ⇒ V (E∗)− V (E′) ≥ 0 for all E ∈ EB, (OA.29)

that is, that the “if” part must holds weakly. Then I will show the “only if” part. Finally, I

11Note that if Ri = 0 for some i ∈ {M,S}, then the baseline model reduces to the standard single-sector model
from Sattinger (1979).

12Formally, the quadruples in E are such that if the sectoral firm measures are RM , RS , then there exist wage
functions wM , wS that, together with the supply functions SM , SS and demand functions DM = SM , DS = SS ,
satisfy the conditions from Definition 1.

13The first part is trivial. The second part follows from the fact that all workers will be available to join the
other sector but market clearing requires that at most Rj can actually be hired by sector j firms.
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will show that any equilibrium is the unique maximizer.

‘If ’ Assume that EE is non-empty and consider some E∗, E′ such that E∗ ∈ EE, E
′ ∈ EB and

E∗ 6= E′. Denote by W the set of pairs of sectoral functions w = (wM , wS) that are of the form

prescribed by Equation (8) given E∗ and consider an arbitrary w∗ ∈W.

Denote the total wage bill in sector i under wage function wi and supply function Si as

w̄i(wi, Si) = −
∫ 1

0
wi(t)si(t)dt.

where ∂
∂vSi(v) = si(v). Note that for Ri > 0 we have w̄i(wi, Si) = Ri

∫ 1

1−Si(0)

Ri

wi(S
−1
i ((1 −

h)Ri))dh. We can now denote the average wage in the economy i under wage schedule w =

(wM , wS) and supply functions S = (SM , SS) as

w̄(w, S) = w̄M (wM , SM ) + w̄S(wS , SS).

Note that by the definition of a sectoral supply function w̄(w∗, S∗) ≥ w̄(w∗, S′). Further, if

S∗ 6= S′, then this inequality holds strictly, because the measure of workers who are indifferent

between joining manufacturing or services is equal to 0.

Profit maximization implies that, if R′i > 0, then

r̄∗i − ci =

∫ 1

0
max{πi(v∗i (h), h)− w∗i (v∗i (h)), 0}dh− ci ≥

Ti(S
′
i, R
′
i)− w̄i(w∗i , S′i)
R′i

− ci, (OA.30)

where v∗i is the hiring function defined in Section III.A.2.

I will prove the result by first assuming that R∗i , R
∗
S > 0 and only later considering the

alternative. Note that if R∗M , R
∗
S > 0, then v∗i (h) = (S∗i )−1((1 − h)R∗i ) for h ∈ [0, 1 − S∗i (0)

R∗i
],

whereas for h ∈ [0, 1− Si(0)
Ri

] we have πi(v, h)− w∗i (v) ≤ 0 for all v ∈ [0, 1]. This gives

r̄∗i − ci =
Ti(S

∗
i , R

∗
i )− w̄i(w∗i , S∗i )

R∗i
− ci. (OA.31)

Note also that R′M (r̄∗M − cM ) + R′S(r̄∗S − cS) ≥ V (E′) − w̄(w∗, S′). If R′M , R
′
S > 0 this follows

directly from Equation (OA.30). If R′i = 0, then it follows as Ti(S
′
i, R
′
i) − Rici − w̄i(w∗i , S′i) ≤

0 = R′i(r̄
∗
i − ci). Thus we can write

V (E∗)− w̄(w∗, S∗) = R∗M (r̄∗M − cM ) +R∗S(r̄∗S − cS) = R′M (r̄∗M − cM ) +R′S(r̄∗S − cS)

≥ V (E′)− w̄(w∗, S′). (OA.32)

Now suppose that R∗i = 0. By definition of equilibrium follows that ri − ci ≤ 0. If R′i > 0

we have that

0 = Ti(S
∗
i , R

∗
i )− w̄i(w∗i , S∗i )−R∗i ci ≥ R′i(r̄∗i − ci) ≥ Ti(S′i, R′i)− w̄i(w∗i , S′i)−R′ici.(OA.33)
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Also, trivially, if R′i = 0, then

0 = Ti(S
∗
i , R

∗
i )− w̄i(w∗i , S∗i )−R∗i ci = Ti(S

′
i, R
′
i)− w̄i(w∗i , S′i)−R′ici.

Thus, it follows that V (E∗)− w̄(w∗, S∗) ≥ V (E′)− w̄(w∗, S′).

V (E∗)− w̄(w∗, S∗) ≥ V (E′)− w̄(w∗, S′) and the fact that w̄(w∗, S∗) > w̄(w∗, S′) imply that

V (E∗)− V (E′) ≥ w̄(w∗, S∗)− w̄(w∗, S′) ≥ 0.

’Only if ’ Denote as Si(·, RM , RS) the equilibrium supply of skill in sector i in the baseline

model if the measures of firms are RM , RS .14 Define

T (RM , RS) = TM (SM (RM , RS), RM ) + TS(SS(RM , RS), RS), (OA.34)

V (RM , RS) = V (SM (RM , RS), SS(RM , RS), RM , RS), (OA.35)

so the gross and net total surpluses holding in an equilibrium of the baseline model if the

measures of firms are RM , RS . In a direct analogy, we can also denote the average profits in

sector i holding in equilibrium for RM , RS as r̄i(RM , RS). Note that the profits are defined

uniquely if Ri > 0 and RM +RS 6= 0, otherwise they can take a range of values.

Lemma OA.11. Consider (RM , RS), (R′M , R
′
S) ∈ R2

≥0. For any t ∈ [0, 1] define Ri(t) =

Ri + t(R′i − Ri) and V (t) = V (RM (t), RS(t)). The following is true: (a) V (·) is absolutely

continuous; (b) for any t ∈ (0, 1) for which V is differentiable, we have

Vt(t) = (R′M −RM )(r̄M (RM (t), RS(t))− cM ) + (R′S −RS)(r̄S(RM (t), RS(t))− cS),

giving

V (t) = V (0) +

∫ t

0
(R′M −RM )(r̄M (RM (s), RS(s))− cM ) + (R′S −RS)(r̄S(RM (s), RS(s))− cS)ds.

(OA.36)

Proof. As the baseline model is an assignment game, it follows from the results in Gretsky et al.

(1992) that the equilibrium of the baseline model is efficient, and thus

V (RS , RM ) = max
(SM ,SS)∈SB

V (SM , SS , RM , RS), (OA.37)

where SB = {(SM , SS) : ∃(RM ,RS)∈R2
≥0

(SM , SS , RM , RS) ∈ EB}. For any (RM , RS), (R′M , R
′
S) ∈

R2
≥0 we can define V (SM , SS , t) = V (SM , SS , RM (t), RS(t)). Note that Vt(SM , SS , t) exists as

long as Ri(t) 6= Si(0), and Ri(t) 6= 0 so for all t ∈ [0, 1] but at most four. Further, whenever

Vt(SM , SS , t) does exist we have that

Vt(SM , SS , t) = (R′M −RM )(r̄S(SM , RM (t))− cM ) + (R′S −RS)(r̄(SS , RS(t))− cS),

14Formally, SM (·, RM , RS) = Si(·) if and only if there exists some function SS(·) such that (SM , SS , RM , RS) ∈
EB.
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where

r̄i(Si, Ri) =


∫ 1

0

∫ h
0

∂
∂hπi(S

−1
i ((1− p)Ri), p)dp+ πi(S

−1
i (Ri), 0) dh for Ri ∈ (0, Si(0)),∫ 1

1−Si(0)

Ri

∫ h
1−Si(0)

Ri

∂
∂hπi(S

−1
i ((1− p)Ri), p)dp dh for Ri > Si(0).

(OA.38)

Thus,

V (SM , SS , t) = V (SM , SS , t1) +

∫ t

t1

(R′M −RM )r̄M (SM , RS(s)) + (R′S −RS)r̄S(SS , RS(s))ds,

proving that V (SM , SS , ·) is absolutely continuous for any (SM , SS) ∈ SB and any choice of

(RM , RS), (R′M , R
′
S). Clearly, r̄(Si, Ri(t))− ci ∈ [−ci, πi(1, 1)− ci], implying

|Vt(SM , SS , t)| ≤ (R′M −RM ) max{cM , πM (1, 1)}+ (R′S −RS) max{cS , πS(1, 1)}

which proves V (t) is absolutely continuous by Theorem 2 in Milgrom and Segal (2002).

Define T (t) = T (RM (t), RS(t)) and pick any t ∈ (0, 1) for which T (t) is differentiable. Con-

sider two c′M , c
′
S ∈ R≥0 such that c′i = r̄i(RM (t), RS(t)). For entry costs c′M , c

′
S , the quadruple

(SM (RM (t), RS(t)), SS(RM (t), RS(t)), RM (t), RS(t)) is an equilibrium of the extended model,

implying that it maximizes the function V ′(t) = T (t) − c′MRM (t) − c′MRM (t). Clearly, both

V (·) and V ′(·) are differentiable at t as well. It follows from first order conditions that V ′t (t) = 0

implying that

Tt(t) = (R′M −RM )c′M + (R′S −RS)c′S

= (R′M −RM )r̄M (RM (t), RS(t)) + (R′S −RS)r̄S(RM (t), RS(t)).

This proves that

Vt(t) = (R′M −RM )(r̄M (RM (t), RS(t))− cM ) + (R′S −RS)(r̄S(RM (t), RS(t))− cS),

which, together with the absolute continuity of V (t) proves Equation (OA.36) as well.

Consider RMM , R
M
S ≥ 0 for which V (E) is maximized. I will show that RMM , R

M
S must

satisfy condition (iv) of the equilibrium definition and, together with the corresponding supply

functions, constitute an equilibrium.

First, I will show that if RMM > 0 then r̄M − cM ≥ 0. First, pick some R′M < RMM and define

V (t) for (RMM , R
M
S ) and (R′M , R

M
S ). From Lemma OA.11 and the definition of maximum follows

that there exists some t′ ∈ (0, 1) such that for any t < t′ we have r̄M (RM (t), RMS (t)) ≥ cM . If

RMM+RMS 6= 1 then this immediately implies r̄M (RMM , R
M
S ) ≥ cM by continuity. If RMM+RMS = 1,

there exist wage functions for which r̄M (RMM , R
M
S ) ≥ cM—and condition (iv) is satisfied as well.

It remains to show that if RMM ≥ 0 then r̄M − cM ≤ 0. The proof is analogous: pick some

R′′M > RMM and it follows from an analogous reasoning as for RMM ≥ 0 that there exists some

t′ ∈ (0, 1) such that for any t < t′ we have r̄M (RM (t), RMS (t)) ≤ cM . Thus the result follows
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from continuity of r̄M (RM (t), RMS (t)).15 The proof for services is analogous.

Uniqueness Again, assume that EE is non-empty and consider some E∗, E′ such that E∗ ∈
EE, E

′ ∈ EB and E∗ 6= E′. Suppose that V (E∗) = V (E′). From (OA.29) follows that this

is possible only if E′ ∈ EE. Further, if S∗ 6= S′, then w̄(w∗, S∗) − w̄(w∗, S′) > 0, and thus

V (E∗) = V (E′) is possible only if S∗ = S′ and R∗i 6= R′i for some i ∈ {i, j}. Finally, it follows

from Equation (OA.38) and Assumption 1 that if R∗i 6= R′i then r̄(S∗i , R
∗
i ) 6= r̄(S∗i , R

′
i) = ci,

implying that E∗ 6∈ EE; contradiction! Therefore, V (E∗) > V (E′).

This result can be interpreted as an analogue of the First and Second Welfare Theorems

for this economy. First, it means that any equilibrium is efficient. Secondly, it means that

any efficient allocation of workers and firms to sectors holds in some equilibrium.16 Finally,

it implies that any equilibrium allocation of workers and firms E maximizes total net surplus

uniquely. It follows trivially that if an equilibrium exists it must be (essentially) unique.

Theorem OA.2. An equilibrium exists and is essentially unique, in that the equilibrium mea-

sure of firms entering each sector, as well as skill supply and demand, are unique. Further, the

equilibrium wage functions are uniquely determined for all matched workers (i.e., for vi ≥ vci ).

Proof. Existence. Denote as Si(·, RM , RS) the equilibrium supply of skill in sector i in the

baseline model, holding for RM , RS . It follows from the proof of Theorem 1 that SS is continuous

in RM , RS for any RM , RS > 0. Thus because
∫ 1

1−Si(0)

Ri

πi(S
−1
i ((1 − h)Ri), h)dh ≤ πi(1, 1) for

any Ri > 0, it follows that

V (RM , RS) = V (SM (RM , RS), SS(RM , RS), RM , RS)

is continuous in RM , RS .17

Lemma OA.12. If RM > R̄M = πM (1,1)+πS(1,1)
cM

then V (RM , RS) < 0 = V (0, 0).

Proof. It follows from Equation (OA.28) that, trivially, Ti(RM , RS) ≤ πi(1, 1), where Ti(RM , RS)

is defined as in the proof of Proposition OA.9. Thus it follows from the definition of net total

surplus that

V (RM , RS) ≤ πM (1, 1)−RMcM + πS(1, 1).

Note that πM (1, 1) − RMcM + πS(1, 1) < 0 for any RM > πM (1,1)+πS(1,1)
cM

, implying that

V (RM , RS) < 0 = V (0, 0), as required.

Of course, an analogous result holds for services. Define the set R̄ = {(RM , RS) ∈ R2
≥0 :

RM ≤ R̄M , RS ≤ R̄S . Because the net total surplus for (RM , RS) = (0, 0) is zero, it follows

15r̄M (RM (t), RMS (t)) is continuous even at RMM = 0, in the sense that there exists an average manufacturing
profit that holds in an equilibrium at RMM = 0 that is the limit of the average profit that holds for RM > 0, as
RM → 0. This is because the equilibrium wage function that holds in the non-degenerate sector (services) is
trivially continuous in RM , and the services wage function determines the lowest wage function in manufacturing
that prevents any worker from joining that sector. A similar reasoning holds even if both sectors are degenerate.

16This is because any efficient allocation of workers given RM , RS is an equilibrium of the baseline model,
which follows from the results in Gretsky et al. (1992).

17This is because limRi→0 Vi(Si, Ri) = 0 · limRi→0

∫ 1

1−Si(0)
Ri

πi(S
−1
i ((1− h)Ri), h)dh ≤ 0 · πM (0, 0) = 0.
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from Lemma OA.12 that

max
(RM ,RS)∈R2

≥0

V (RM , RS) = max
(RM ,RS)∈R̄

V (RM , RS).

As R̄ is closed and bounded, it follows from Weierstrass’ Theorem that V (RM , RS) admits a

global maximum on R2
≥0. As by Proposition OA.9 any global maximum must be en equilibrium,

existence follows.

Uniqueness. Follows immediately from Proposition OA.9.18

Wages First, if RM + RS 6= 1 in equilibrium, then this follows from the Equation (8) and

Lemma 1. Otherwise the constant of integration Ci is not uniquely determined in the baseline

model; here, however, if C ′i > Ci, then r̄′i > r̄i contradicting the requirement that both have to

be equal to ci.

Both the existence results and the uniqueness results are new.19 This is in contrast to

the baseline model, where uniqueness of the equilibrium was a new result but its existence

could have easily been shown from existing results for assignment models (Gretsky et al., 1992).

Further, the uniqueness of equilibrium is stronger here than in the baseline model, as wages are

de facto uniquely determined even if RM + RS = 1. This is because constant average profits

pinpoint the split of surplus in the least productive match (see below).

Costrell and Loury (2004)

In the hierarchical job assignment model of Costrell and Loury (2004), firms are homogeneous

but consist of a hierarchy of heterogeneous jobs. The surplus produced by a firm is simply the

sum of the surpluses produced by all the jobs (and all of them need to be filled to produce

anything). Surplus produced in any job is supermodular in the job’s rank and the skill of the

worker assigned to it. The zero profit condition ensures that, in equilibrium, the measure of all

jobs is equal to the measure of workers. Because of positive and assortative matching, a worker

with skill v is assigned to a job of rank h = G(v) (where G(·) denotes the cdf of skill). Using

my notation, the wage paid to a worker with skill vS in the Costrell and Loury model is

wCL(v) = π(v,G(v)) +

∫ 1

0

∫ h

G(v)

∂

∂hi
πM

(
G−1(t), t

)
dt dh. (OA.39)

In equilibrium, the more productive and profitable jobs cross-subsidize the less productive jobs,

leading to firm-wide profit of zero.20

The wage function in the extended model is a generalization of Equation (OA.39). To see

18Consider a pair E∗, E′ ∈ EE and E∗ 6= E′. Then (OA.29) implies that V (E∗) > V (E) and V (E∗) < V (E)
which is a contradiction.

19The only other paper I am aware of that allows for endogenous entry of firms in an assignment model is
Costrell and Loury (2004), which is a single-sector, one-dimensional model.

20Technically, Costrell and Loury (2004) allow only for multiplicative surplus functions, in the form µ(v)β(h).
There is no problem, however, with generalizing their framework to supermodular surplus functions.
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this, note that the profit of firm hi in sector i can be written as

ri(hi) =

∫ hi

hci

∂

∂hi
πi

(
P−1
i (h), h

)
dh+ ri(h

c
i ), (OA.40)

where hci = P (vci ) denotes the productivity of the least productive matched firm. The profit

earned by said firm is pinned down by the zero-expected-profits condition:

ri(h
c
i ) +

∫ 1

Pi(vci )

∫ h

Pi(vci )

∂

∂hi
πM

(
P−1
M (t), t

)
dtdh = cM . (OA.41)

The wage received by a worker of skill vi is wi(vi) = π(vi, Pi(vi)) − ri(Pi(vi)). Substituting

Equations (OA.40) and (OA.41) into this expression yields

wi(vi) = π(vi, Pi(vi)) +

∫ 1

hci

∫ h

Pi(vi)

∂

∂hi
πi

(
P−1
i (t), t

)
dtdh− hciri(Pi(vi))− ci. (OA.42)

This is similar to Equation (OA.39) but the two wage functions differ if the skill and matching

functions are not identical, that is, if Ri 6= Si(0). In addition to this, in the Costrell and Loury

(2004) model all workers are employed and all tasks must be filled (by assumption) but this

is not necessarily the case here. However, the extended model nests a two-sector version of

the hierarchical job assignment model if the total measure of firms is necessarily equal to 1 in

equilibrium.

Assumption OA.1 (Costrell–Loury Specification). πi(1, 1)−πi(1, 0) ≤ ci for both i ∈ {M,S},
and πi(0, 0) > ci for some i ∈ {M,S}.

This ensures that the total measure of firms, RM + RS , is equal to 1 in equilibrium.21

Any specification of the extended model that meets Assumption OA.1 will be referred to as

a Costrell–Loury (CL) specification. In Sections OA.5.3 and OA.5.3, I will focus on Costrell–

Loury specifications, as they are much more tractable than the general model because of the

property that the measures of workers and firms are equal. Further, every firm hires a worker,

and all workers are employed. Therefore, the Costrell–Loury specification of my model can be

reinterpreted as a model in which firms are homogeneous within each sector but consist of a

hierarchy of heterogeneous jobs.

Skill Interdependence and Wage Polarization

Similarly to the baseline model, the overall effect of an increase in skill interdependence raises

wage polarization in absolute terms under fairly general conditions: The only difference is that

now I will also assume that the cross-partial of the surplus function is crosses zero at most once,

21If RM + RS < 1, then r̄i ≥ πi(0, 0) > ci in one of the sectors, violating the zero-expected-profit condition.

Similarly, if RM +RS > 1, then ri(0) = 0 in at least one sector, implying that ci ≥
∫ 1

0
∂
∂hi

πi
(

1, h
)

dh ≥ ri(1) ≥ r̄,
and thus again violating the zero-expected-profit condition. Note, by the way, that Assumption OA.1 can be

weakened significantly. For example,
∫ 1

0

∫ h
0

∂
∂hi

πM
(

1, t
)

dtdh ≤ cM is sufficient, as the LHS must be greater than
r̄.
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that is, if ∂2

∂vi∂hi
πi(v

′
i, h
′
i) = 0 then ∂2

∂vi∂hi
πi(vi, hi) = 0 for all (vi, hi) ≤ (v′i, h

′
i). This assumption

is needed to ensure that entry can change only if the model is equivalent to Roy’s model (in

which case only the composition effect is present and the results follow immediately).

However, to ensure that polarization increases also in relative terms, a slightly stronger

notion of regularity is needed than the one defined in Section IV.A.2. I will say that a change

in interdependence is strongly regular if d
dv

(
Cvi(v, v, θ2) − Cvi(v, v, θ1)

)
|v=0 > 0. This implies

that Cvi(v, v, θ2)− Cvi(v, v, θ1) > 0 for v close to 0.

Proposition OA.10 (Wage Polarization). Suppose that Assumption OA.1 is satisfied, ∂2

∂vi∂hi
πi

crosses zero at most once, the concordance of the skill distribution increases regularly, and

Equation (19) is satisfied. Then W (t) − W (0) falls for all t ≤ t̄ (strictly for some t ∈
(0, t̄)) and W (1) −W (0) increases. In addition, if (a) the change in concordance is strongly

regular, (b) the model is symmetric and (c) either (i) wi(0; θ1) is sufficiently high or (ii)

max{M,S}×[0,1]2]
∂2

∂vi∂hi
πi(vi, hi) is sufficiently small, then polarization increases in relative terms

as well.22

Proof. I will start by proving that wage polarization must increase in absolute terms. Re-

call that v̄S ≡ sup{vS ∈ [0, 1] : ψ(vS) < 1} and v̄M ≡ ψ(v̄S). First, I will show that

if ∂2

∂vS∂hS
πS(v̄S , GS(v̄S)) > 0, then Equation (19) can be satisfied only if ∂

∂θRS = 0, which

then implies further that ∂
∂θRM = 0 and the result follows by the same proof as the analo-

gous statement from Proposition 1. If v̄S < 1 then ψ(v̄S) = 1 and ∂
∂θGM (ψ(v̄S)) = 0, while

GS(v̄S) = 1− 1−v̄S
RS

and ∂
∂θGS(v̄S) =

∂
∂θ
RS
RS

1−v̄S
RS

. As Equation (19) implies that ∂
∂θ

∂
∂vS

wS(v̄S) =
∂
∂vS

ψ(vS) ∂∂θ
∂

∂vM
wM (v̄M ), it follows that sign( ∂∂θGM (ψ(v̄S))) = sign( ∂∂θGS(v̄S)), which is pos-

sible only if ∂
∂θRS = 0 and the result follows. If v̄S = 1 then ψ(v̄S) = 1 or ψ(v̄S) < 1. In

the latter case, the result follows by an analogous reasoning as for v̄S < 1. In the former

case we have that gi(v̄i) =
∂
∂vi

C(1,1)

Ri
= 1

Ri
so that ∂

∂θgS(1) = −
∂
∂θ
RS
RS

gS(1) and ∂
∂θgM (ψ(1)) =

∂
∂θ
RS

1−RS gM (1). As Gi(vi) = Gi(1) −
∫ 1
vi
gi(r)dr and ∂

∂θGi(1) = 0 it follows that if ∂
∂θRS > (<)0

then ∂
∂θGS(vS) > (<)0 and ∂

∂θGM (ψ(vS)) < (>)0 for all vS ≈ 1. This, however, contradicts
∂
∂θ

∂
∂vS

wS(vS) = ∂
∂θ

∂
∂vM

wM (ψ(vS)) and thus also Equation (19). Thus, ∂
∂θRS = 0 and the result

follows.

Second, if ∂2

∂vS∂hS
πS(v̄S , Gi(v̄S)) = 0, then ∂2

∂vS∂hS
πS(vS , Gi(vS)) = 0 for all vS ≥ vcS by the

fact that ∂2

∂vS∂hS
πS crosses zero at most once. Thus, ∂

∂vS
wS(vS) is unchanged and d

dθ (W (t) −
W (0)) = −W ′(t) ∂∂θC(vM (t), vS(t); θ) from which the result follows trivially.

As far as the second statement is concerned, under symmetry W (t) = wS(G−1
S (t)), implying

that

W ′(t) =

∂
∂vS

πS(G−1
S (t), t)

gS(G−1
S (t))

,

where gS denotes the pdf of GS ; thus

d

dθ

W ′(t)

W (t)
=

W (t)−1

gS(G−1
S (t))

(
∂

∂θ
G−1
S (t)

∂2πS(G−1
S (t))

∂vS∂vS
−
∂πS(G−1

S (t), t)

∂vS

(
d
dθgS(G−1

S (t))

gS(G−1
S (t))

+
∂
∂θW (t)

W (t)

))
.

22 The definition of the symmetric case in the extended model differs from the definition for the baseline model
only in that the condition RM = RS is replaced by cM = cS , which—provided all other symmetry conditions are
met—implies that RM = RS in equilibrium.
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Consider δ > 0 such that, for all v ∈ [0, δ], (a) d
dv

∂2

∂θ∂vi
C(v, v) > 0 and (b) d

dvgS(v) > 0—such

δ must exist by the strong regularity condition, the fact that d
dvgS(0) = ∂2

∂vS∂vM
C(0, 0) > 0 and

continuity. Note that for t ≤ GS(δ)

d

dθ
gS(G−1

S (t)) ≥ ∂

∂θ
gS(G−1

S (t)) =

∫ G−1
S (t)

0

d

dv

∂2

∂θ∂vi
C(v, v)dv ≥ G−1

S (t)L8

where L8 ≡ minv∈[0,δ]
d
dv

∂2

∂θ∂vi
C(v, v), whereas

gS(G−1
S (t)) =

∫ G−1
S (t)

0

d

dv
gS(r)dr ≤ G−1

S (t)L9,

with L9 ≡ maxv∈[0,δ]
d
dvgS(v). Note that L8, L9 > 0 and both are finite, because C is twice

continuously differentiable. It follows then that

d

dθ

W ′(t)

W (t)
≤ W (t)−1

gS(G−1
S (t))

(
∂

∂θ
G−1
S (t)

∂2πS(G−1
S (t))

∂vS∂vS
−
∂πS(G−1

S (t), t)

∂vS

(
L8

L9
+

∂
∂θW (t)

W (t)

))
.

for t ≤ GS(δ). Because ∂
∂θG

−1
S (0) = 0 it follows by continuity that if W (0) is large enough

or ∂
∂θW (0) is sufficiently small, then there must exist t̄ ≤ GS(δ) such that d

dθ
W ′(t)
W (t) < 0 for all

t ∈ (0, t̄).23 The first is ensured by a high enough reservation value, whereas the latter by weak

enough supermodularity of the surplus function. This proves the second statement by the fact

that lnW (t)− lnW (0) =
∫ t

0
W ′(t)
W (t) .

Changes to Surplus Functions

In this section I investigate the effects of changes to manufacturing’s surplus function. I again

focus on Costrell–Loury specifications but the main result (Proposition OA.11) holds in general.

I find that with endogenous entry, sorting depends not only on the vertical differentiation of

workers but also on the vertical differentiation of firms.

As in Section IV, in the comparative statics results I will consider only specifications that

result in non-degenerate equilibria, that is, those with Ri(cj) > 0 for i ∈ {M,S} and j ∈ {1, 2}.

Definition OA.8 (Firms’ Vertical Differentiation). Firms in services become (strictly) more

vertically differentiated if, for any vS ∈ [0, 1] and any 0 ≤ h′S < h′′S ≤ 1

πS(vS , h
′′
S ; θ2)− πS(vS , h

′
S ; θ2)(>) ≥ πS(vS , h

′′
S ; θ1)− πS(vS , h

′
S ; θ1).

This is an exact analogue of an increase in workers’ vertical differentiation (see Definition 4

in Section IV.B). To guarantee that the supply of skill increases in services, apart from an

increase in workers’ differentiation and a universal increase in surplus levels, we also need an

increase in differentiation in services firms. To see this, let us consider what could happen

otherwise. Keeping sorting constant, a fall in differentiation might reduce firms’ profits, thus

decreasing entry into services. This decreases the demand for skill in services—and, as a result,

23Note that if ∂2

∂hi∂vi
πi(vi, hi) is arbitrarily close to 0 for all (vi, hi) then ∂

∂θ
W (0) is arbitrarily close to 0 as

well.
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could lower the supply of skill in equilibrium.24 To rule out this possibility, firms’ differentiation

needs to increase (weakly).

Proposition OA.11. If both workers and firms in services become more vertically differentiated

and the surplus produced in services increases universally, then the measure of firms and supply

of skill increase in services and fall in manufacturing.

Proof. Endow the space R2
≥0 with the following partial order �: if R′M ≤ RM and R′S ≥ RS

then (R′M , R
′
S) � (RM , RS). Clearly, (R2

≥0,�) is a lattice.

Recall the function V : R2
≥0 → R≥0 defined in Equation (OA.35). I will argue that V is

supermodular under order �. Consider two points R′′M , R
′′
S and RM , RS , such that R′′i ≥ Ri.

V (•) is supermodular if and only if for any such pair of points it is the case that

V (R′′M , RS) + V (RM , R
′′
S) ≥ V (R′′M , R

′′
S) + V (RM , RS).

We can rewrite the above as

V (R′′M , RS)− V (RM , RS) ≥ V (R′′M , R
′′
S)− V (RM , R

′′
S).

By Lemma OA.11 this can be rewritten as∫ R′′M

RM

r̄M (s,RS)ds ≥
∫ R′′M

RM

r̄M (s,R′′S)ds. (OA.43)

It follows immediately from Equation (OA.38) and the fact that, by Theorem OA.1, SeM (RM , R
′′
S) ≤

SeM (RM , RS), that for any RM we have r̄M (RM , RS) ≥ r̄M (RM , R
′′
S), which proves that Equa-

tion (OA.43) must hold.

Further, consider some (R′M , R
′
S) � (RM , RS), then by Lemma OA.11 follows that

V (R′M , R
′
S)− V (RM , RS) = V (R′M , R

′
S)− V (RM , R

′
S) + V (RM , R

′
S)− V (RM , RS)

= −
∫ RM

R′M

r̄M (s,R′S)− cMds+

∫ R′S

RS

r̄S(RM , s)− cSdm

It follows, again, from Equation (OA.38) and Theorem OA.1 that r̄M (RM , R
′
S ; θ2) ≤ r̄M (RM , R

′
S ; θ1)

and r̄S(RM , RS ; θ2) ≥ r̄S(RM , RS ; θ1). Denote the net surplus holding in the equilibrium of the

baseline model in specification θj , with firm measures RM , RS as V (RM , RS , θj). Then it follows

that

V (R′M , R
′
S , θ2)− V (RM , RS , θ1) ≥ V (R′M , R

′
S , θ2)− V (RM , RS , θ1).

In other words V (RM , RS , θ) has increasing differences in θ ∈ {θ1, θ2}. Finally, note that the

equilibrium sectoral firm measures R∗M (θj), R
∗
S(θj) are given by

(R∗M (θj), R
∗
S(θj)) = arg max

(RM ,RS)∈R2
≥0

V (RM , RS , θj).

24Of course, the increase in workers’ differentiation pushes in the opposite direction, as explained in Sec-
tion IV.B. Nevertheless, the impact of lower differentiation of firms can easily be the dominant force.
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From the facts that R2
≥0 endowed with the � is a lattice, θ ∈ {θ1, θ2} endowed with the

increasing order is a partially ordered set, V (RM , RS , θj) is supermodular in (RM , RS) and

satisfies the increasing differences property in (RM , RS ; θj) it follows from Theorem 6.1 in Topkis

(1978) (or, alternatively, Theorem 4 in Milgrom and Shannon (1994)) that RM (θ2) ≤ RM (θ1)

and RS(θ2) ≥ RS(θ2).

Finally, note that a change from specification θ1 to specification θ2 of the extended model

constitutes a change from specification (RM (θ1), RS(θ1), θ1) to specification (RM (θ2), RS(θ2), θ2),

i.e. there is a simultaneous fall in RM , increase in RS , universal increase in surplus level in

services, and an increase in vertical differentiation of both workers and firms in services. This

can be broken down as a change from (RM (θ1), RS(θ1), θ1) to (RM (θ1), RS(θ1), θ1) and only

then (RM (θ2), RS(θ1), θ2); applying Theorem OA.1 to both changes proves the result.

As explained in Section OA.5.2, for a given measure of firms, an increase in workers’ differ-

entiation together with a universal increase in surplus attracts additional high-skilled workers

to manufacturing. Combined with an increase in firms’ differentiation, this increases profits in

manufacturing, induces more firms to enter, and thus further increases demand for manufactur-

ing skill. This results in an increase in equilibrium supply of skill in manufacturing.

Proposition OA.12. Suppose Assumption 5 is satisfied in the baseline model, and that
∂
∂vS

πS(vS , hS ; θ3) = ∂
∂vS

πS(vS , hS ; θ1). As long as RM (θ3)
RM (θ1) is small enough and ∂2

∂vM∂hM
πM > 0,

the wage gradient falls in manufacturing ( ∂
∂vM

wi(vM ; θ3)− ∂
∂vM

wM (vM ; θ1) < 0).

Proof. First, note that Equation (11) can be rewritten as wM (vM ) = wS(φ(vM )). Differenti-

ating gives that φvM (vM ) ≥
max ∂

∂vM
πM

min ∂
∂vS

πS
, for any vM ∈ (vcM , v̄). Note that

max ∂
∂vM

πM

min ∂
∂vS

πS
> 0 by

Assumptions A2.1 and A2.2.

For any aR ∈ (0, 1] we can always define a function φ(·, aR) : [vcM (θ1), 1] → [0, 1] such

that
∂

∂vM
C(vM ,φ(vM ,aR))

aR
= ∂

∂vM
C(vM , φ(vM ; θ1)). I will show that there must exist some a∗R >

0 such that if aR < a∗R then φvM (vM , aR) <
max ∂

∂vM
πM

min ∂
∂vS

πS
for all vM ∈ [vcM (θ1), v̄(θ1)]. By

differentiating the definition of φ(·, aR) we get φvM (vM , aR) =
−s′M (vM ;θ1)aR+CvMvM

(vM ,φ(vM ,aR))

CvMvS
(vM ,φ(vM ,aR)) ,

where −s′M (vM ; θ1) = d
dvM

[ ∂
∂vM

C((vM , φ(vM , θ1))]. Therefore, it is sufficient to show that

− s′M (vM ; θ1)aR + CvMvM (vM , φ(vM , aR)) < c
¯

min ∂
∂vM

πM

max ∂
∂vM

πM
, (OA.44)

where c
¯

= min(vM ,vS)∈[0,1]2 CvMvS (vM , vM ) > 0 by Assumption A3.2. Note that ∂
∂vM

C(vM , ·) is

continuously increasing, and that ∂
∂vM

C(vM , 0) = 0 for all vM ∈ [0, 1]. From the definition of

φ(·, aR) this implies that for small enough aR, φ(vM , aR) must be arbitrarily small as well and,

hence, so does CvMvM (vM , φ(vM , aR)). Altogether, these facts imply that for small enough aR,

Equation (OA.44) must be met, as required.

Consider RM (θ3)
RM (θ1) < a∗R and set aR = RM (θ3)

RM (θ1) . It follows from the definition of φ(vM , aR) and
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Assumption OA.1 that

PM (vM ; θ1) =

∫ vM

vcM (θ1)

∂
∂vM

C(vM , φ(vM , aR))

RM (θ3)
.

Thus, we can define SM (vM ; aR) ≡ RM (θ3)−
∫ vM
vcM (θ1)

∂
∂vM

C(vM , φ(vM , aR)); note that SM (0; aR) =

RM (θ3) and SM (1; aR) = 0, as required of all supply functions. By the fact that aR < a∗R fol-

lows that φvM (vM , aR) < φvM (vM ; θ3) for all vM ∈ E = [max{vcM (θ3), vcM (θ1)}, v̄M (θ3)]. Let

me adapt the definitions of the sets Ξ1,Ξ2 in the proof of Theorem OA.1 as Ξ1 = {vM ∈
E : φ(vM ; aR) < φ(vM ; θ3) ∧ SM (vM ; aR) > SM (vM ; θ3)}, Ξ2 = {vM ∈ E : φ(vM ; aR) ≤
φ(vM ; θ3)∧SM (vM ; aR) ≥ SM (vM ; θ3)}. It follows trivially that if v ∈ Ξ2 then [v, v̄M (θ3)] ⊂ Ξ1,

whereas for v ≥ v̄M (θ3) we have that

∂

∂vM
C(vM , φ(vM , aR)) ≤ aR <

∂

∂vM
C(vM , φ(vM , θ3)).

Because SM (1; θ3) = 1 it follows that if v ∈ Ξ2 then SM (1; aR) > 0—contradiction! Suppose

that vcM (θ3) ≤ vcM (θ1), then SM (vcM (θ3); θ3) ≤ SM (vcM (θ3); aR) and φ(vM ; θ3) ≥ φ(vM ; aR)—

contradiction! Thus, vcM (θ3) > vcM (θ1), and thus SM (vcM (θ1); θ3) > SM (vcM (θ1); aR), which—by

Lemmas OA.6 and OA.7—implies that SM (vM ; θ3) > SM (vM ; aR) and thus PM (vM ; θ3) <

PM (vM ; θ1) for all vM . Thus, the result follows by inspection of Equation (7).

In the case of a large expansion of services, the only workers remaining in manufacturing

are those skilled highly in manufacturing but not in services. However, because initially (again,

the expansion is large) manufacturing was employing some workers who were not highly skilled

in either sector, it follows that proportionately more low- than high-skilled workers left manu-

facturing. Thus the distribution of skill improves in manufacturing, causing a fall in the wage

gradient.

OA.5.4 Dynamics

In this section I develop a dynamic, overlapping generations version of the model with endoge-

nous entry. As I did in Section VI.B, I restrict attention to the canonical formulation of the

model, without loss of generality.

Workers In each period t ∈ N there exist two generations of workers, the old (O) and the

young (Y). Period t’s young generation is the old generation of period t + 1, whereas the old

generation of period t dies in period t+1. Each generation consists of a measure 0.5 of workers,

whose skills are given by a copula C that meets Assumption 3.25 A third random variable

vP ∈ {0, 1} determines workers’ sophistication and is distributed independently of both skills.

If vP = 0, which happens with probability sp ∈ [0, 1], the worker correctly foresees future wages;

otherwise vP = 1 and the worker uses last period’s wage functions to reach her sorting decision.

The discount factor is δ ∈ [0, 1]. When young, workers can costlessly join either occupation.

25This implies that each generation has the same distribution of skill. Of course, if there is a shock to that
distribution, it will affect only the upcoming generations and, hence, there will exist some period where the two
are different.
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When old, they can switch from occupation j ∈ {M,S,U} to occupation i ∈ {M,S,U} (U

denotes unemployment), but they need to pay a switching cost scji. I assume that remaining

in ones current sector is costless (scjj = 0). The assumptions about reservation payoffs are

unchanged from the main model.

Firms In each period t ∈ N there exists an unlimited supply of identical firms. Following

Costrell and Loury, I assume that every firm consists of a continuum of standard uniformly

distributed jobs. In each period, there is a fixed cost ci > 0 of operating in sector i. If a firm

operates in sector i ∈ {M,S} and hires a worker of skill (vM , vS) to perform job h, then the

surplus produced in this job is πi(vi, hi), where the function πi meets Assumptions A2.1–A2.3.

The overall surplus produced within a firm is equal to the sum of the surpluses produced in all

jobs, with unfilled jobs producing surplus equal to 0.

Supply and Demand

Supply of Skill If a worker with skill (vM , vS) joins sector i in period t, she receives wage

wti(vi), where wti : [0, 1]→ R; an unemployed worker receives 0 in any period. Old workers base

their sorting decision only on the payoff they expect to receive in the current period. Therefore,

for an old worker of type v = (vM , vS , vP ) who worked in sector j ∈ {M,S,U} in period t− 1,

the net present value of the payoff from joining sector i in period t is

NPV t
i (v;O, j) =

w
t−vP
i (vi)− scji for i ∈ {M,S},

0 for i = U.

Note that sophisticated workers anticipate the correct wages, whereas unsophisticated workers

use last period’s wages to form their expectations.

Due to switching costs, sophisticated young workers take into account the wages they will

receive when they are old. For example, if a worker could earn more in services in the current

period, but expects manufacturing to pay much better in the future, she might decide to join

manufacturing already as a young worker and save on the switching cost in the future. Therefore,

for an young worker of type v, the net present value of the payoff from joining sector i in period

t is given by:

NPV t
i (v;Y ) =

w
t−vP
i (vi) + δmaxk∈{M,S,U}NPV

t+1−vP
k (v;O, i) for i ∈ {M,S},

0 + δmaxk∈{M,S,U}NPV
t+1−vP
k (v;O, i) for i = U.

Of course, the worker will join sector i only if her NPV from joining that sector is greater than

from joining any other sector.

Given those self-selection rules, for any period t and generation k ∈ {Y,O} we can easily

partition the space [0, 1]2×{0, 1} into such sets AtM (k), AtS(k), AtU (k) that a worker joins sector
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i ∈ {M,S,U} if and only if her v ∈ Ai. In particular

Ati(Y ) =
{

v : NPV t
i (v;Y ) ≥ max

k 6=i
NPV t

k (v;Y )
}
,

Ati(O) =
⋃

j∈{M,S,U}

{v ∈ At−1
j (Y ) : NPV t

i (v;O, j) ≥ max
k 6=i

NPV t
i (v;O, j)}.

The sectoral supply of skill of level v in period t, Sti (v), is defined in the same way as in

Section III.A.2, as the measure of workers with sector specific skill of at least t who join sector

i, for given wage functions wM , wS :

Sti (vi) = 0.5Pr
(
Vi ≥ vi,V ∈ Ati(Y )

)
+ 0.5Pr

(
Vi ≥ vi,V ∈ Ati(O)

)
. (OA.45)

Demand for Skill The demand for skills in each period is still determined by the firms’ hiring

decisions. The firms take the period t wage function as given and do not face any frictions in

hiring and re-assigning workers who joined the sector in which they produce. Any mapping

v : [0, 1] :→ [0, 1] represents some assignment of workers to jobs within a firm. The total profit

earned by a firm operating in sector i that assigns workers to jobs according to v is then

r̄ti(v) =

∫ 1

0
max{πi(v(h), h)− wti(v(h)), 0}dh− ci.

The contribution of job h to the maximized profit of firm operating in sector i is denoted by

rti(hi) and is earned if worker of skill v∗i is assigned to the job, where rti : [0, 1] → R and

v∗ti : [0, 1]→ [0, 1], with

rti(hi) = max
v∈[0,1]

πi(v, hi)− wti(v), (OA.46)

vt∗i (hi) ∈ arg max
v∈[0,1]

πi(v, hi)− wti(v). (OA.47)

Because profit is additively separable in πi(v(h), h)−wti(v(h)), it follows that profit is maximized

if and only if a sector i firm (a) hires a worker of skill v∗i (h) to perform h as long as this produces

positive per-job profit (i.e., if rti(hi) ≥ 0) and (b) leaves job h vacant otherwise. Therefore:

r̄ti = max
v
r̄ti(v) =

∫ 1

0
max{rti(h), 0} dh− ci.

In each period firms operate in the sector that maximizes their profit (if any). Denoting the

measure of firms that in period t operate in sector i by Rti, this implies that if entry is positive

in sector i (Rti > 0), then profit must be equal to the cost of entry: r̄ti = ci.

Demand for skills can now be defined. The sectoral demand for skill of level v in period t,

Dt
i(t), is equal to the measure of jobs in sector i to which workers with sector-specific skill of

at least t are assigned, for a given wage function wti :

Dt
i(vi) = RtiPr

(
vt∗i (Hi) ≥ vi, rti(Hi) ≥ 0

)
. (OA.48)

Definition OA.9. An equilibrium is characterized by:
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1. an infinitely countable sequence of pairs of sectoral supply functions:

{(S1
M , S

1
S), (S2

M , S
2
S) . . . (StM , S

t
S) . . . } , where Sti : [0, 1]→ [0, 1], such that Sti is consistent

with workers’ sorting decisions and given by Equation (OA.45);

2. an infinitely countable sequence of pairs of sectoral measures of firms:

{(R1
M , R

1
S), (R2

M , R
2
S) . . . (RtM , R

t
S) . . . }, where (RtM , R

t
S) ∈ R≥0, such that r̄i = ci if Rti >

0 and r̄i ≤ ci otherwise;

3. an infinitely countable sequence of pairs of sectoral demand functions:

{(D1
M , D

1
S), (D2

M , D
2
S) . . . (Dt

M , D
t
S) . . . }, where Dt

i : [0, 1]→ [0, 1], such that Dt
i is consis-

tent with workers’ sorting decisions and given by Equation (OA.48);

4. an infinitely countable sequence of pairs of sectoral wage functions:

{(w−1
M , w−1

S ), (w0
M , w

0
S) . . . (wtM , w

t
S) . . . }, where wti : [0, 1] → R, which clear the markets

Sti (vi) = Dt
i(vi) for i ∈ {M,S}, vi ∈ [0, 1] and t ≥ 1.26

An equilibrium is steady state if the wage functions do not change over time, i.e. for any

i ∈ {M,S} and any pair t′, t′′ ∈ Z≥−1 it is the case that wt
′
i (·) = wt

′′
i (·).

Proposition OA.13. The steady-state equilibrium of the dynamic model is identical to the

competitive equilibrium of the static model (Definition OA.7), in the sense that the equilibrium

supply, demand and wage functions, as well as the sectoral firm measures, are determined by

the same set of equations. It follows, therefore, from Theorem OA.2 that the steady state

equilibrium exists and is unique.

Proof. Denote the steady state wage functions as wM , wS . It follows by inspection of Equations

(3) and (OA.46), as well as (5) and (OA.48), that—given the same wage functions—the sectoral

firm measures and the sectoral demand functions are the same in a steady state and competitive

equilibria. Therefore it is sufficient to show that the supply functions are identical as well. First,

note that in any steady-state equilibrium:

max
i∈{M,S,U}

N t
i (v;Y ) = (1 + δ) max{wM (vM ), wS(vS), 0}.27

Therefore, a young worker joins sector i only if wi(vi) ≥ max{wj(vj), 0}, where j 6= i. This

the very same rule as in the static model. Further, because scji ≥ 0 it follows trivially that for

any i, k ∈ {M,S,U} such that i 6= k we have that Atj(Y ) ∩ Ati(O) = ∅, i.e. an old worker will

join sector i if and only if they joined that sector as a young worker as well. It follows that

Ati(Y ) = Ati(O) and, hence:

SM (vM ) = Pr
(
VM ≥ vM , wM (VM ) ≥ wS(VS), wM (VM ) ≥ 0

)
,

SS(vS) = Pr
(
VS ≥ vS , wM (VM ) < wS(VS), wS(VS) > 0

)
,

as required.

26The wage functions for periods −1 and 0 are needed for the supply functions in period 1 to be well defined.
27If the worker chose a sector that does not maximize her current wage, in the next period she would either

need to bear a switching cost or—because wage functions do not change in steady-state—receive a lower than
possible wage in the next period as well.
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Proposition OA.13 shows that the results derived for the static model remain valid even

if dynamics are introduced. Note that the equivalence between the static and steady state

equilibria holds for any discount factor, switching costs and fraction of sophisticated workers.

In particular, the static equilibrium will correctly describe the long-run behavior of the dynamic

economy even if the cost of switching sectors is prohibitively high. Nevertheless, the natural

replacement of older generations by new ones will lead to the same long run behavior as when

there are no switching costs present.

The transitional dynamics, however, do depend on the assumptions about workers’ sophisti-

cation, switching costs, and discount factors. For example, if all workers were forming rational

expectations and switching sectors were costless, the economy would jump to the new equi-

librium immediately. If, however, all workers were backward-looking and switching costs were

prohibitive, the new equilibrium would be achieved only after many generations. Of course, if

different assumptions were made about the within-sector assignment, the dynamics would be

different still.28 What the correct assumptions to make are is an empirical question to which

there does not seem to exist a conclusive answer.29

Finally, note that this dynamic model could be generalized further and yet the above con-

clusions would continue to hold. For example, we could have N-generations, or firms that are

not fully flexible in their decisions whether to produce or not and Proposition OA.13 would

continue to hold. The reason is that the requirement that wage functions are constant across

time implies that the choices of all agents in the model do not change across time either.

OA.6 Differentiability of Solutions

First, note that Equation (19) implies that ∂
∂θψ(vS) exists and is equal to 0, and thus all other

objects of the model are differentiable wrt θ as well. Thus, I can take derivatives wrt θ in the

proofs of all results that assume that Equation (19) is satisfied.

Lemma OA.13. Suppose that Assumption 5 is satisfied, that one or more of C, πM , πS depend

on a parameter θ, and that they are continuously differentiable in θ for any (x, y) ∈ [0, 1]2.30

Then ψ(v; θ) and Gi(v; θ) are continuously differentiable in θ as well, and the derivatives are

continuous in vi and θ.

I will show this for the case when only πS depends on θ, to keep notation simple. All the

other cases are analogous.

28A natural alternative would be to model a decentralized dynamic assignment. Klaus and Newton (2016), for
example, show that in the long run the assignment must correspond to the competitive equilibrium assignment
with probability one. However, this literature restricts attention to the case of discrete types and finite number
of agents, and the results cannot be straightforwardly applied to a model with continuous types.

29The huge literature on expectation formation argues convincingly that agents are not fully sophisticated
but provides little guidance as to how significant this departure from rational expectations is (Coibion and
Gorodnichenko, 2015, page 2645). The literature informs us that occupational mobility is substantial and on
the rise (Kambourov and Manovskii, 2008); however, it looks at the number of transitions between occupations,
which—in my model—would be determined jointly by the skill copula, the switching costs, and the discount
factors.

30The result in no way relies on Assumption 5. However, I only need it to hold for the cases that satisfy this
assumption, and the proof is simpler in that case.
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To prove this result I will make use of the parameter a from the proof of Theorem 1, which

in turn determines vcS and vcM according to Equation (OA.14). Define the vector p = [a, θ] and

consider the following system of differential equations

∂

∂vS
ψe(vS ; p) =

∂
∂vS

πeS

(
vS , GS(vs; p); θ

)
∂

∂vM
πeM

(
ψe(vS ; p), 1

RM
C(ψe(vS ; p), vS)− RS

RM
GeS(vS ; θ)

) , (OA.49)

∂

∂vS
GeS(vS ; p) =

∂
∂vS

Ce(ψe(vS ; p), vS)

RS
, (OA.50)

with initial conditions ψ(vcS(a)) = vcM (a) and GS(vcS(a)) = 0. Trivially, this system is equivalent

to the integral equation T considered in the proof of Theorem 1. Thus, there exists a unique pair

of functions ψe(·; p), GeS(·; p) that solve this system. It follows that my system satisfies the condi-

tions from Gronwall (1919) and Theorems 14.3 and 14.4 in Hairer, Norsett, and Wanner (1993),

and therefore ψe(·; p), GeS(·; p) are differentiable wrt α ∈ {a, θ} and ∂
∂αψ

e(vS ; p), ∂
∂αGS(vS ; p)

are differentiable wrt vS and continuous in θ.

Under Assumption 5, a must solve G(1; a, θ) = 1. From Lemma OA.1 we know that
∂
∂αψ

e(vS) ≥ 0 for any vS . In addition, the initial value condition together with the continuity of
∂
∂θψ

e(vS) implies that ∂
∂θψ

e(vS) > 0 for some vS . It follows, thus, that ∂
∂θG(1; a, θ) > 0. The im-

plicit function theorem implies, therefore, that the function a(θ) which solves G(1; a(θ), θ) = 1

is continuously differentiable in θ. Thus, the (extended) equilibrium separation function is also

differentiable in θ with:

∂

∂vS
(

d

dθ
ψe(vS)) =

∂vcM
∂θ

∂

∂a
(
∂

∂vS
ψe(vS)) +

∂

∂θ
(
∂

∂vS
ψe(vS)),

and thus d
dθψ

e(vS ; θ) is continuous in vS and θ. The result for d
dθGS(vS) follows immediately.
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