Appendices for Online Publication for:
 "Mexican Migration to the United States:
 Selection, Assignment, and Welfare"*

Michał Burzyński

Luxembourg Institute of Socio-Economic Research (LISER)

Paweł Gola

Norwegian Business School (BI)

April 2020

Abstract

Online Appendix A provides all ommitted proofs, derivations and results of all formal statements. Online Appendix B provides a graphical comparison of the Clayton, Gaussian, and Gumbel copulas. Online Appendix C provides details of the calibration procedure, Online Appendix D reports the results of several robustness checks and Online Appendix E compares numerically how wages change in response to a supply shock in the assignment and CES models.

[^0]
A Ommitted Proofs and Derivations

Proof of Proposition 1

To simplify what follows, we first introduce new notation. The difference between the new and old values of any object O is denoted as $\Delta_{\rho} O$. The greater of the old and new values of O is denoted as max O. Thus, for instance, the change in the wage of a worker of skill x is denoted by $\Delta_{\rho} w(x)$ and the greater critical skill is denoted by $\max x^{c}$.
(i) Note that for any $x \geq \max x^{c}$ we have that:

$$
\begin{equation*}
\Delta_{\rho} m(x) \geq 0 \Longleftrightarrow \frac{\bar{G}\left(x ; \rho_{1}\right)}{\bar{G}\left(x ; \rho_{2}\right)} \geq \frac{R^{W}\left(\rho_{2}\right)+R_{M}^{W}\left(\rho_{2}\right)}{R^{W}\left(\rho_{1}\right)+R_{M}^{W}\left(\rho_{1}\right)} \frac{R^{F}\left(\rho_{1}\right)}{R^{F}\left(\rho_{2}\right)} \tag{A.1}
\end{equation*}
$$

Consider $c=\inf \left\{x \in[0,1]: \Delta_{\rho} w(x)>0\right.$ or $\left.x=1\right\}$. There are two possibilities: (a) $c>\max x^{c}$ or (b) $c \leq \max x^{c}$. Starting with (a), it follows by inspection of Equation (6) that $\Delta_{\rho} m(c) \geq 0$. Thus, Equation (A.1) implies that $\Delta_{\rho} m(x) \geq 0$ for all $x>c$ and thus $c=\bar{x}$. Now, assume (b); it must be the case that $\Delta_{\rho} x^{c}<0$. As $r\left(x^{c}, m\left(x^{c}\right)\right)=w^{c}$ we have that $\Delta_{\rho} m\left(x^{c}\left(\rho_{1}\right)\right)>0$. Thus, $c=\bar{x}$. The fact that $\bar{x} \in\left(\max x^{c}, 1\right)$ follows from the following Lemma.

Lemma 1. If $\Delta_{\rho} w\left(x^{0}\right) \neq 0$ for some $x^{0} \in\left[\max x^{c}, 1\right]$, then there exist some $x^{j} \in\left[x^{c}\left(\rho_{j}\right), 1\right]$ such that $\Delta_{\rho} w\left(x^{1}\right)>0$ and $\Delta_{\rho} w\left(x^{2}\right)<0$.

Proof. It suffices to show that if $\Delta_{\rho} w\left(x^{0}\right)>0$ then x^{2} exists. The proof will be by contradiction. Suppose that there exists a $x^{0} \in\left[\max x^{c}, 1\right]$ such that $\Delta_{\rho} w\left(x^{0}\right)>0$, yet for all $x \geq x^{c}\left(\rho_{2}\right)$ we have that $\Delta_{\rho} w(x) \geq 0$. Note that $\Delta_{\rho} w\left(x^{0}\right) \geq(>) 0$ implies that $\pi\left(m\left(x ; \rho_{2}\right) ; \rho_{2}\right) \leq(<) \pi\left(m\left(x ; \rho_{2}\right) ; \rho_{1}\right) .{ }^{1}$ Therefore $\Delta_{\rho} \pi(h) \leq 0$ for all $h \in\left[h^{c}\left(\rho_{2}\right), 1\right]$, where $h^{c}\left(\rho_{2}\right)=m\left(x\left(\rho_{2}\right) ; \rho_{2}\right)$. This further implies that $h^{c}\left(\rho_{2}\right) \geq$ $h^{c}\left(\rho_{1}\right)$. Continuity implies that there exists some ϵ such that $\pi\left(m\left(x ; \rho_{2}\right) ; \rho_{2}\right)<$ $\pi\left(m\left(x ; \rho_{2}\right) ; \rho_{1}\right)$ for all $x \in\left(x^{0}-\epsilon, x^{0}+\epsilon\right)$. Altogether, this implies that $\pi^{E}\left(\rho_{2}\right)<$ $\pi^{E}\left(\rho_{1}\right)=c_{i}$, which contradicts the zero-expected-profits condition.
(ii) First, for any $\rho \in[0,1]$ define the function $G(\cdot ; \rho)=(1-\rho) G\left(\cdot ; \rho_{1}\right)+$ $\rho G\left(\cdot ; \rho_{2}\right)$. This allows us to take derivatives with respect to ρ; in particular, note

[^1]that:
$$
\int_{0}^{1} \Delta_{\rho} w(x) \mathrm{d} G_{N}(x)=\int_{0}^{1} \int_{0}^{1} \frac{\partial}{\partial \rho} w(x ; \rho) \mathrm{d} G_{N}(x) \mathrm{d} \rho
$$

Second, observe that $G_{N}(x) \geq_{h r} G\left(\rho_{1}\right) \geq_{h r} G(\rho) \geq_{h r} G\left(\rho_{2}\right)$. Third, notice that $\frac{\partial}{\partial \rho} w^{\prime}(x ; \rho)=\frac{\partial}{\partial \rho} m(x ; \rho) \frac{\partial^{2}}{\partial x \partial h} r(x, m(x ; \rho))$ for $x>x^{c}$ and $=0$ for $x<x^{c}$. Together with Equation (A.1) this implies that $\frac{\partial}{\partial \rho} w^{\prime}\left(x^{\prime} ; \rho\right)>0 \Rightarrow \frac{\partial}{\partial \rho} w^{\prime}\left(x^{\prime \prime} ; \rho\right)>0$ for any $x^{\prime \prime} \geq x^{\prime}$.

Given the observations above, (ii) follows from the following two Lemmas. ${ }^{2}$
Lemma 2. For any $G\left(\rho_{1}\right), G\left(\rho_{2}\right)$ it is the case that:

$$
\int_{0}^{1} \frac{\partial}{\partial \rho} w(x ; \rho) \mathrm{d} G(x ; \rho)=0
$$

Proof. Using $w(x)=r(x, m(x))-\pi(m(x))$ for $x \geq x^{c}$ we can write

$$
\int_{0}^{1} \frac{\partial}{\partial \rho} w(x) \mathrm{d} G(x ; \rho)=\int_{0}^{1} \frac{\partial}{\partial \rho} \pi(h) \mathrm{d} h=0
$$

using the facts that average profits are constant, that $\pi\left(h^{c}\right)=0$ and that, by Equation (1) and the Envelope Theorem, $\frac{\partial}{\partial \rho} \pi(m(x))=\frac{\partial m(x)}{\partial \rho} \frac{\partial}{\partial h} r(x, m(x))$.

Lemma 3. Suppose that $\frac{\partial}{\partial \rho} w^{\prime}\left(x^{\prime} ; \rho\right)>0 \Rightarrow \frac{\partial}{\partial \rho} w^{\prime}\left(x^{\prime \prime} ; \rho\right)>0$ for any $x^{\prime \prime} \geq x^{\prime}$ and that $G_{N} \geq_{h r} G(\rho)$, then

$$
\int_{0}^{1} \frac{\partial}{\partial \rho} w(x ; \rho) \mathrm{d} G_{N}(x) \geq \frac{\bar{G}_{N}\left(x_{0}\right)}{\bar{G}\left(x_{0} ; \rho\right)} \int_{0}^{1} \frac{\partial}{\partial \rho} w(x ; \rho) \mathrm{d} G(x ; \rho),
$$

where $x_{0}=\inf \left\{x \in[0,1]: \frac{\partial}{\partial \rho} w^{\prime}(x ; \rho)>0\right.$ or $\left.x=1\right\}$.
Proof. Denote $\int_{0}^{1} \frac{\partial}{\partial \rho} w(x ; \rho) \mathrm{d} G_{N}(x)$ by $\frac{\partial}{\partial \rho} \operatorname{AvWoN}$. Then

$$
\begin{aligned}
\frac{\partial}{\partial \rho} \operatorname{AvWoN} & =\int_{0}^{1} \bar{G}_{N}(x) \frac{\partial}{\partial \rho} w^{\prime}(x ; \rho) \mathrm{d} x \\
& =\int_{0}^{1} \frac{\bar{G}_{N}(x)}{\bar{G}(x ; \rho)} \bar{G}(x ; \rho) \frac{\partial}{\partial \rho} w^{\prime}(x ; \rho) \mathrm{d} x \\
& \geq \frac{\bar{G}_{N}\left(x_{0}\right)}{\bar{G}\left(x_{0} ; \rho\right)} \int_{0}^{1} \frac{\partial}{\partial \rho} w(x ; \rho) \mathrm{d} G(x ; \rho) .
\end{aligned}
$$

[^2]
Proof of Theorem 1

The proof should be read after (or concurently with) the sketch provided in the main text.

Wages

The critical skill in country i (i.e., the skill level of the least-skilled worker employed in country i) is defined as $x_{i}^{c}=\min \left\{x_{i U}^{c}, x_{i M}^{c}\right\}$. Given the critical skill level, the matching function, wage gradient and wage function are given by Equation (4), (5) and (6), respectively, and the wage paid to the worker with critical skill level x_{i}^{c} is determined by the outside option of that worker. In particular, if $x_{i}^{c}<1$ then $w_{M}^{c}\left(x_{M}^{c}\right)=w_{M}^{c}$, whereas $w_{U}\left(x_{U}^{c}\right)=\min \left\{w_{U}^{c}, e^{\Delta_{U M}} P_{U}\left(w_{M}^{c} / P_{M}+\delta_{U M}\right)\right\}$, where $w_{i}^{c} \equiv P_{i}^{c} \bar{w}_{i}^{c}$. To see why, first suppose that $i=M$ (the argument for $i=U$ is analogous). It follows immediately from Equation (16) and the definitions of $x_{M M}^{c}$ and $U_{M M}^{c}$ that if $x_{i}^{c}<1$ then $w_{M}^{c}\left(x_{M}^{c}\right) \geq P_{M} w_{M}^{c}$. As $f_{M}\left(0, h_{M}\right)<0$, it follows that in equilibrium workers with skill x_{M} close to 0 cannot be employed in Mexico; thus $x_{M}^{c}>0$. It follows that $w_{M}^{c}\left(x_{M}^{c}\right) \leq P_{M} w_{M}^{c}$-the continuity of the revenue function implies that otherwise workers with skill slightly lower than x_{M}^{c} would strictly prefer to be employed in Mexico than remain unemployed, which contradicts the definition of the critical skill.

Finally, because $x_{M M}^{c}=x_{M}^{c}$ we have that if $x_{M M}^{c}<1$, then $w_{M}\left(x_{M M}^{c}\right)=$ w_{M}^{c}. This further implies from Equation (16) that if $x_{U M}^{c}<1$, then $w_{U}\left(x_{U M}^{c}\right)=$ $P_{U}\left(e^{\Delta_{U M}} w_{M}^{c} / P_{M}+\delta_{U M}\right)$.

Supply Functions

Given the definition of the separation function, Equation (19) follows immediately by the exact same reasoning as in the proof of Lemma 2 in Gola (2019).

Feasibe Allocations

Define the set \mathbb{E} of partial equilibrium allocations as the set of allocations for which there exists a pair of wage functions w_{U}, w_{M} that induces both the supply and the demand functions to be equal to S_{U}, S_{M} and satisfies the zero-expected-profitcondition. Define also $x_{M}^{s}=\inf \left\{x_{M} \geq x_{M}^{c}: \psi\left(x_{M}\right)=1\right\}$. Equations (18)-(21) and the requirement that labor markets clear put strong restrictions on the partial equilibrium allocations. In particular, the restrictions on allocations imply that for any $A \in \mathbb{E}$, it must be the case that (1) $S_{i j}:[0,1] \rightarrow\left[0, R_{i}^{W}\right]$ is non-decreasing,
absolutely continuous, and semi-differentiable on the interior, with $S_{i j}(1)=0$; (2) the function $\psi:\left[x_{M M}^{c}, 1\right] \rightarrow\left[x_{U M}^{c}, 1\right]$ that satisfies $\partial C\left(\psi\left(x_{M}\right), x_{M}\right) / \partial x_{M}=$ $-\partial_{+} S_{M M}\left(x_{M}\right) / \partial x_{M}$ is well-defined, with a continuous, strictly positive derivative at $x_{M} \in\left(x_{M}^{c}, x_{M}^{s}\right) ;(3) S_{M U}, S_{M M}$ satisfy Equation (20) and $-\partial_{+} S_{M i}\left(x_{i}\right) / \partial x_{M} \in$ $(0,1)$; (4) $S_{U U}\left(x_{U}\right)$ satisfies (21), and (4) $S_{i}(0) \leq R_{i}^{F}$, where $S_{i}\left(x_{i}\right)=S_{i i}\left(x_{i}\right)+$ $S_{i j}\left(x_{i}\right)$ and $S_{M U}\left(x_{M}\right)=0 .^{3}$ The allocations meeting conditions (1)-(4) will be called feasible and the set of all feasible allocations will be denoted by \mathbb{A}. Clearly, $\mathbb{E} \subset \mathbb{A}$.

Uniqueness

Proposition 1. A worker and firm allocation $A^{*} \in \mathbb{A}$ can hold in the partial labor market equilibrium if and only if it maximizes the weighted sum of (net) revenues:

$$
A^{*} \in \mathbb{E} \Leftrightarrow V\left(A^{*}\right)-V(A)>0 \text { for all } A \in \mathbb{A} \backslash\left\{A^{*}\right\} .
$$

Proof. The proof will consist of two steps. First, we will prove that

$$
\begin{equation*}
A^{*} \in \mathbb{E} \Rightarrow V\left(A^{*}\right)-V\left(A^{\prime}\right) \geq 0 \text { for all } A^{\prime} \in \mathbb{A} . \tag{A.2}
\end{equation*}
$$

and, further, that if $V\left(A^{*}\right)=V\left(A^{\prime}\right)$ then $A^{\prime} \notin \mathbb{E}$. Second, we will prove

$$
\begin{equation*}
A^{*} \in \mathbb{E} \Leftarrow V\left(A^{*}\right)-V\left(A^{\prime}\right) \geq 0 \text { for all } A^{\prime} \in \mathbb{A} \backslash A^{*}, \tag{A.3}
\end{equation*}
$$

which will complete the proof.

"If"

Assume that \mathbb{E} is non-empty and consider some A^{*}, A^{\prime} such that $A^{*} \in \mathbb{E}, A^{\prime} \in \mathbb{A}$ and $A^{*} \neq A^{\prime}{ }^{4}$ The tuple $w=\left(w_{M}, w_{S}\right)$ that clears markets for A^{*} is denoted as $w^{*} .{ }^{5}$

We can write the total real wage bill of country j citizens who work in country

[^3]i, under wage function w_{i} and supply function $S_{i j}$ as:
$$
\bar{w}_{i j}^{A}\left(w_{i}, S_{i j}\right)=\int_{1}^{0} \frac{w_{i}(t)}{P_{i}} \mathrm{~d} S_{i j}(t)
$$

Define the weighted average of (net) real wages of all workers as:

$$
\begin{aligned}
\bar{w}^{A}(w, A)= & e^{-\Delta_{U M}}\left[\bar{w}_{U M}^{A}\left(w_{U}, S_{U M}\right)+\bar{w}_{U U}^{A}\left(w_{U}, S_{U U}\right)+\bar{w}_{U}^{c} F\left(x_{U}^{c}\left(S_{U U}\right)\right) R_{U}^{W}\right] \\
& +\bar{w}_{M M}^{A}\left(w_{M}, S_{M M}\right)+\bar{w}_{M}^{c} C\left(x_{U M}^{c}(A), x_{M}^{c}(A)\right)-\delta_{U M} S_{U M}(0)
\end{aligned}
$$

As $S_{U M}^{*}, S_{M}^{*}, S_{U U}^{*}$ and w^{*} are the equilibrium supply and wage functions, respectively, it follows from the first equilibrium condition (Definition 2) that

$$
\begin{equation*}
\bar{w}^{A}\left(w^{*}, A^{*}\right) \geq \bar{w}^{A}\left(w^{*}, A^{\prime}\right) \tag{A.4}
\end{equation*}
$$

Profit maximization implies that, if $R_{i}^{F^{\prime}}>0$, then

$$
\begin{align*}
\frac{\pi_{i}^{E *}}{P_{i}}-c_{i}^{e}= & \frac{1}{P_{i}} \int_{0}^{1} \max \left\{r_{i}\left(\mu_{i}(h), h\right)-w_{i}^{*}\left(\mu_{i}(h)\right), 0\right\} \mathrm{d} h-c_{i}^{e} \\
& \geq \frac{T_{i}\left(S_{i}^{\prime}, R_{i}^{F^{\prime}}\right)-w_{i j}^{A}\left(w_{i}^{*}, S_{i j}^{\prime}\right)-w_{i i}^{A}\left(w_{i}^{*}, S_{i i}^{\prime}\right)}{R_{i}^{F^{\prime}}}-c_{i}^{e} \tag{A.5}
\end{align*}
$$

where μ_{i} is the optimal hiring function defined in Section 3.3. Suppose that $R_{U}^{F *}, R_{M}^{F *}>0$, the other cases are considered in footnote 6. Note that if $R_{U}^{F *}, R_{M}^{F *}>$ 0 , then

$$
\begin{equation*}
\mu_{i}(h)=\left(S_{i}^{*}\right)^{-1}\left((1-h) R_{i}^{F *}\right) \quad \text { for } h \in\left[1-S_{i}^{*}(0) / R_{i}^{F *}, 1\right] \tag{A.6}
\end{equation*}
$$

whereas for $h \in\left[0,1-S_{i}^{*}(0) / R_{i}^{F *}\right]$ we have $r_{i}(v, h)-w_{i}^{*}(v) \leq 0$ for all $v \in[0,1]$. This gives:

$$
\begin{equation*}
\frac{\pi_{i}^{E *}}{P_{i}}-c_{i}=\left(T_{i}\left(S_{i}^{*}, R_{i}^{F *}\right)-\bar{w}_{i j}^{A}\left(w_{i}^{*}, S_{i j}^{*}\right)-\bar{w}_{i i}^{A}\left(w_{i}^{*}, S_{i i}^{*}\right)\right) / R_{i}^{F *}-c_{i}^{e} \tag{A.7}
\end{equation*}
$$

Note also that $e^{-\Delta_{U M}} R_{U}^{F^{\prime}}\left(\frac{\pi_{U}^{E_{U}^{*}}}{P_{U}}-c_{U}^{e}\right)+R_{M}^{F^{\prime}}\left(\frac{\pi_{M}^{E_{n}^{*}}}{P_{M}}-c_{M}^{e}\right) \geq V\left(A^{\prime}\right)-\bar{w}^{A}\left(w^{*}, A^{\prime}\right)$. If $R_{M}^{F^{\prime}}, R_{S}^{\prime}>0$ this follows directly from Equation (A.5). If $R_{i}^{F^{\prime}}=0$, then it follows as $T_{i}\left(S_{i}^{\prime}, R_{i}^{F^{\prime}}\right)-R_{i}^{F^{\prime}} c_{i}^{e}-w_{i j}^{A}\left(w_{i}^{*}, S_{i j}^{\prime}\right)-w_{i i}^{A}\left(w_{i}^{*}, S_{i i}^{\prime}\right) \leq 0=R_{i}^{F^{\prime}}\left(\pi_{i}^{E *}-c_{i}^{e}\right)$. Using the
fact that $\frac{\pi_{i}^{E *}}{P_{i}}-c_{i}=0$ by the definition of equilibrium, we can write

$$
\begin{align*}
V\left(A^{*}\right)-\bar{w}^{A}\left(w^{*}, A^{*}\right)= & e^{-\Delta_{U M}} R_{U}^{F * *}\left(\frac{\pi_{U}^{E *}}{P_{U}}-c_{U}^{e}\right)+R_{M}^{F *}\left(\frac{\pi_{M}^{E *}}{P_{M}}-c_{M}^{e}\right) \\
& =e^{-\Delta_{U M}} R_{U}^{F^{\prime}}\left(\frac{\pi_{U}^{E *}}{P_{U}}-c_{U}^{e}\right)+R_{M}^{F^{\prime}}\left(\frac{\pi_{M}^{E *}}{P_{M}}-c_{M}^{e}\right) \\
& \geq V\left(A^{\prime}\right)-\bar{w}^{A}\left(w^{*}, A^{\prime}\right) \tag{A.8}
\end{align*}
$$

This proves implication (A.2) by Equation (A.4). ${ }^{6}$
Finally, suppose that $A^{\prime} \in \mathbb{E}$ and that $V\left(A^{*}\right)=V\left(A^{\prime}\right)$. If $S_{i}^{*} \neq S^{\prime}$ for any i, then Equation (A.4) must hold strictly, and thus $V\left(A^{*}\right)>V\left(A^{\prime}\right)$. Hence, $S_{i}^{*}=S_{i}^{\prime}$ for all i and $R_{i}^{F *} \neq R_{i}^{F^{\prime}}$ for some $i \in\{U, M\}$. However, as the profit holding under allocation A is

$$
\begin{equation*}
\pi_{i}^{E}(A)=\int_{1-\frac{S_{i}(0)}{R_{i}^{F}}}^{1} \int_{1-\frac{S_{i}(0)}{R_{i}^{F}}}^{h} \frac{\partial}{\partial h} r_{i}\left(S_{i}^{-1}\left((1-p) R_{i}^{F}\right), p\right) \mathrm{d} p \mathrm{~d} h+r_{i}\left(S_{i}^{-1}\left(R_{i}^{F}\right), 0\right)-w_{i}^{c} \tag{A.9}
\end{equation*}
$$

and surplus increases strictly with firm type, it follows that if $R_{i}^{F *} \neq R_{i}^{F^{\prime}}$ then $\pi_{i}^{E}\left(A^{*}\right) \neq \pi_{i}^{E}\left(A^{\prime}\right)=P_{i} c_{i}^{e}$, implying that $A^{*} \notin \mathbb{E} ;$ contradiction!

"Only If"

This part of the proof will proceed in two steps. First, we will decompose the optimization problem into inner and outer problems, derive the first-order conditions for the inner problem, and show that any maximizer of the inner problem must satisfy conditions (1), (2) and (4) of the competitive equilibrium. Second, we show that any maximizer of the outer problem needs to additionally meet condition (3), thus completing the proof.

$$
\begin{aligned}
& { }^{6} \text { For } R_{i}^{F *} \\
& \text { that } \\
& \qquad \begin{aligned}
& 0 \text { we have by the definition of equilibrium that } \frac{\pi_{i}^{E^{*}}}{P_{i}}-c_{i}^{e} \leq 0 . \text { If } R_{i}^{F^{\prime}}>0 \text { we have } \\
&=T_{i}\left(S_{i}^{*}, R_{i}^{F *}\right)-\bar{w}_{i j}^{A}\left(w_{i}^{*}, S_{i j}^{*}\right)-\bar{w}_{i i}^{A}\left(w_{i}^{*}, S_{i i}^{*}\right)-R_{i}^{F *} c_{i}^{e} \\
& \geq R_{i}^{F^{\prime}}\left(\frac{\pi_{i}^{E *}}{P_{i}}-c_{i}^{e}\right) \geq T_{i}\left(S_{i}^{\prime}, R_{i}^{F^{\prime}}\right)-w_{i j}^{A}\left(w_{i}^{*}, S_{i j}^{\prime}\right)-w_{i i}^{A}\left(w_{i}^{*}, S_{i i}^{\prime}\right)-R_{i}^{F^{\prime}} c_{i}^{e} .
\end{aligned}
\end{aligned}
$$

Also, trivially, if $R_{i}^{F^{\prime}}=0$, then

$$
\begin{aligned}
0 & =T_{i}\left(S_{i}^{*}, R_{i}^{F *}\right)-\bar{w}_{i j}^{A}\left(w_{i}^{*}, S_{i j}^{*}\right)-\bar{w}_{i i}^{A}\left(w_{i}^{*}, S_{i i}^{*}\right)-R_{i}^{F *} c_{i}^{e} \\
& =T_{i}\left(S_{i}^{\prime}, R_{i}^{F^{\prime}}\right)-w_{i j}^{A}\left(w_{i}^{*}, S_{i j}^{\prime}\right)-w_{i i}^{A}\left(w_{i}^{*}, S_{i i}^{\prime}\right)-R_{i}^{F^{\prime}} c_{i}^{e} .
\end{aligned}
$$

Thus, it follows that $V\left(A^{*}\right)-\bar{w}^{A}\left(w^{*}, A^{*}\right) \geq V\left(A^{\prime}\right)-\bar{w}^{A}\left(w^{*}, A^{\prime}\right)$.
"Inner" Problem Denote the set of all functions that meet conditions (1) and (2) of the set of feasible allocations (page 5) by $\mathbb{S}_{M M}$, and the set of all functions that meet condition (1) only by \mathbb{S}. Further, denote by $\mathbb{S}_{U M}\left(S_{M M}\right)$ the set of functions $S_{U M} \in \mathbb{S}$ that satisfy condition (3) of set \mathbb{A} for a given $S_{M M} \in \mathbb{S}_{M M}$. Note that if $x_{M M}^{c}<1$, then the set $\mathbb{S}_{U M}\left(S_{M M}\right)$ is a singelton, which will be denoted by $S_{U M}\left(S_{M M}\right)$.

For given R_{M}^{F}, R_{U}^{F} we can then define the set $\mathbb{A}\left(R_{U}^{F}, R_{M}^{F}\right)$ of all such $S_{M M}, S_{U U} \in$ \mathbb{S} that there exists some $S_{U M} \in \mathbb{S}_{U M}\left(S_{M M}\right)$ such that ($\left.S_{U U}, S_{U M}, S_{M M}, R_{U}^{F}, R_{M}^{F}\right) \in$ \mathbb{A}. Then the optimization problem $\max _{A \in \mathbb{A}} V(A)$ is equivalent to the optimization problem:

$$
\underbrace{\max _{\left(R_{M}^{F}, R_{U}^{F}\right) \in \mathbf{R}_{\geq 0}^{2}} \underbrace{\left(S_{U U}, S_{M M}\right) \in \mathbb{A}\left(R_{U}^{F}, R_{M}^{F}\right)}_{\text {inner problem }} \max _{U U}, S_{M M}, R_{U}^{F}, R_{M}^{F})}_{\text {outer problem }},
$$

where

$$
\begin{gathered}
V\left(S_{U U}, S_{M M}, R_{U}^{F}, R_{M}^{F}\right) \equiv \max _{S_{U M} \in \mathbb{S}_{U M}\left(S_{M M}\right)} V\left(S_{U U}, S_{U M}, S_{M M}, R_{U}^{F}, R_{M}^{F}\right) \\
\text { s.t. } S_{U}(0) \leq R_{U}^{F} .
\end{gathered}
$$

Definition 1. The interior $\operatorname{int}\left(\mathbb{A}\left(R_{U}^{F}, R_{M}^{F}\right)\right)$ of set $\mathbb{A}\left(R_{U}^{F}, R_{M}^{F}\right)$ consists of all such $S_{M M}, S_{U U} \in \mathbb{A}\left(R_{U}^{F}, R_{M}^{F}\right)$ that $x_{U U}^{c}, x_{U M}^{c}, x_{M M}^{c}<1$ and $S_{i}(0)<R_{i}^{F}$.

We will show in detail that all interior solutions of the inner problem satisfy conditions (1), (2) and (4) of the competitive equilibrium. The proof for corner (i.e., not interior) solutions is conceptually identical but requires small tweaks for each of the possible cases.

Fix $\left(R_{M}^{F}, R_{U}^{F}\right) \in \mathbf{R}_{>\mathbf{0}}^{2}$ and consider a maximizer $\left(S_{U U}^{*}, S_{M M}^{*}\right) \in \operatorname{int}\left(\mathbb{A}\left(R_{U}^{F}, R_{M}^{F}\right)\right)$ of the inner problem. ${ }^{7}$ Consider a one-parametric family of functions $S_{M M}\left(\cdot ; t_{M}\right)$ such that (a) for each $t_{M} \in[0,1],\left(S_{U U}^{*}, S_{M M}\left(t_{M}\right)\right) \in \operatorname{int}\left(\mathbb{A}\left(R_{U}^{F}, R_{M}^{F}\right)\right)$, and (b) there exists some t_{M}^{*} that corresponds to $S_{M M}^{*}$. It follows that

$$
t_{M}^{*} \in \underset{t_{M}}{\arg \max } V\left(S_{U U}^{*}, S_{U M}\left(S_{M M}\left(t_{M}\right)\right), S_{M M}\left(t_{M}\right), R_{U}^{F}, R_{M}^{F}\right)
$$

and any maximizer of the original problem has to satisfy the first-order conditions of this single-variable problem. A family $S_{M M}\left(\cdot ; t_{M}\right)$ that satifies the conditions above can be constructed for any interior $\left(S_{U U}^{*}, S_{M M}^{*}\right) .{ }^{8}$ Further, the very

[^4]same exercise can be also conducted for a family of US citizens' supply functions, $S_{U U}\left(\cdot ; t_{U}\right)$.

Define the function

$$
V\left(t_{M} ; S_{U U}^{*}, R_{U}^{F}, R_{M}^{F}\right)=V\left(S_{U U}^{*}, S_{U M}\left(S_{M M}\left(t_{M}\right)\right), S_{M M}\left(t_{M}\right), R_{U}^{F}, R_{M}^{F}\right)
$$

and analogously function $V\left(t_{U} ; S_{M M}^{*}, R_{U}^{F}, R_{M}^{F}\right)$. In the remaining analysis of the inner problem we will supress $\left(S_{U U}^{*}, R_{U}^{F}, R_{M}^{F}\right)$ from notation. The optimal matching function that holds under $\left(S_{U U}\left(t_{U}\right), S_{U M}\left(S_{M M}\left(t_{M}\right)\right), S_{M M}\left(t_{M}\right)\right.$) will be denoted by $m_{i}\left(x_{i} ; t_{M}\right)=\mu_{i}^{-1}\left(x_{i} ; t_{M}\right)$ (see Equation (A.6)). Note that as t_{M} changes, the implied separation function $\psi\left(\cdot ; t_{M}\right)$ changes as well. With this in mind, it can be shown easily that

$$
\frac{\partial}{\partial t_{M}} m_{U}\left(x_{U}\right)=\frac{\frac{\partial}{\partial t_{M}} S_{M M}\left(\phi\left(x_{U}\right)\right)}{R_{U}^{F}} .
$$

Further, note that by integrating $T_{i}(A)$ by substitution, and denoting $\frac{r_{i}\left(x_{i}, h_{i}\right)}{P_{i}}$ by $\bar{r}_{i}\left(x_{i}, h_{i}\right)$ we get that

$$
T_{i}(A)=R_{i}^{F} \int_{m_{i}\left(x_{i}^{c}\right)}^{1} \bar{r}_{i}\left(\mu_{i}(h), h\right) \mathrm{d} h .
$$

Differentiating wrt t_{M} yields

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t_{M}} T_{i}(A)= & -R_{i}^{F} \bar{r}_{i}\left(x_{i}^{c}, m_{i}\left(x_{i}^{c}\right)\right) \frac{\mathrm{d}}{\mathrm{~d} t_{M}} m_{i}\left(x_{i}^{c}\right) \\
& -R_{i}^{F} \int_{m_{i}\left(x_{i}^{c}\right)}^{1} \frac{\frac{\partial}{\partial t_{M}} m_{i}\left(\mu_{i}(h)\right)}{m_{i}^{\prime}\left(\mu_{i}(h)\right)} \frac{\partial}{\partial x_{i}} \bar{r}_{i}\left(\mu_{i}(h), h\right) \mathrm{d} h
\end{aligned}
$$

[by substitution] $=\bar{r}_{i}\left(x_{i}^{c}, m_{i}\left(x_{i}^{c}\right)\right) \frac{\partial}{\partial t_{M}} S_{i}(0)+R_{i}^{F} \int_{x_{i}^{c}}^{1} \frac{\mathrm{~d}}{\mathrm{~d} t_{M}} m_{i}\left(x_{i}\right) \frac{\partial}{\partial x_{i}} \bar{r}_{i}\left(x_{i}, m_{i}\left(x_{i}\right)\right) \mathrm{d} x_{i}$.
Thus it can be shown that:

$$
\begin{aligned}
\frac{\partial}{\partial t_{M}} V= & \frac{\mathrm{d}}{\mathrm{~d} t_{M}}\left[e^{-\Delta_{U M}} T_{U}(A)+T_{M}(A)+\bar{w}_{M}^{c} C\left(x_{U M}^{c}, x_{M M}^{c}\right)-\delta_{U M} S_{U M}(0)\right] \\
= & e^{-\Delta_{U M}} \int_{x_{M M}^{c}}^{1} \frac{\partial}{\partial t_{M}} S_{M M}\left(x_{M}\right) \psi^{\prime}\left(x_{M}\right) \frac{\partial}{\partial x_{U}} \bar{r}_{U}\left(\psi\left(x_{M}\right), m_{U}\left(\psi\left(x_{M}\right)\right)\right) \mathrm{d} x_{M} \\
& -\int_{x_{M M}^{c}}^{1} \frac{\partial}{\partial t_{M}} S_{M M}\left(x_{M}\right) \frac{\partial}{\partial x_{M}} \bar{r}_{M}\left(x_{M}, m_{M}\left(x_{M}\right)\right) \mathrm{d} x_{M}
\end{aligned}
$$

 must exist small enough $\underline{\epsilon}, \bar{\epsilon}>0$ that $\left(S_{U U}^{*}, S_{M M}\left(t_{M}\right)\right) \in \operatorname{int}\left(\mathbb{A}\left(R_{U}^{F}, R_{M}^{F}\right)\right)$ for all $t_{M} \in[0,1]$.

$$
\begin{align*}
& +\frac{\partial}{\partial t_{M}} S_{U M}(0) e^{-\Delta_{U M}}\left(\int_{x_{U}^{c}}^{x_{U M}^{c}} \frac{\partial}{\partial x_{U}} \bar{r}_{U}\left(x_{U}, m_{U}\left(x_{U}\right)\right) \mathrm{d} x_{U}+\bar{r}_{U}\left(x_{U}^{c}, m_{U}\left(x_{U}^{c}\right)\right)\right) \\
& -\frac{\partial}{\partial t_{M}} S_{U M}(0) \delta_{U M} \\
& +\bar{r}_{M}\left(x_{M}^{c}, m_{M}\left(x_{M}^{c}\right)\right) \frac{\partial}{\partial t_{M}} S_{M M}(0)+\bar{w}_{M}^{c} \frac{\mathrm{~d}}{\mathrm{~d} t_{M}} C\left(x_{U M}^{c}, x_{M M}^{c}\right), \tag{A.10}\\
\frac{\partial}{\partial t_{U}} V= & \frac{\mathrm{d}}{\mathrm{~d} t_{U}} e^{-\Delta_{U M}}\left[T_{U}(A)+w_{U}^{c} F\left(x_{U U}^{c}\right) R_{U}^{W}\right] \\
= & e^{-\Delta_{U M}} \frac{\partial}{\partial t_{M}} S_{U U}(0) \bar{r}_{U}\left(x_{U}^{c}, m_{U}\left(x_{U}^{c}\right)\right) \\
& +e^{-\Delta_{U M}} \frac{\partial}{\partial t_{M}} S_{U U}(0)\left(\int_{x_{U}^{c}}^{x_{U U}^{c}} \frac{\partial}{\partial x_{U}} \bar{r}_{U}\left(x_{U}, m_{U}\left(x_{U}\right)\right) \mathrm{d} x_{U}-\bar{w}_{U}^{c}\right) \tag{A.11}
\end{align*}
$$

Because $V\left(t_{i}\right)$ is a single-variable function, it follows that $\frac{\partial}{\partial t_{i}} V\left(t_{i}\right) \leq 0$ if $t_{i}^{*} \in[0,1)$ and $\frac{\partial}{\partial t_{i}} V\left(t_{i}\right) \geq 0$ if $t_{i}^{*} \in(0,1]$. Crucially, these conditions must hold for all families $S_{i i}\left(\cdot ; t_{i}\right)$ that meet conditions (a) and (b) above.

Lemma 4. For any interior maximizer ($S_{U U}^{*}, S_{M M}^{*}$) of the inner problem, it is the case that if $x_{M} \in\left(x_{M M}^{c *}, x_{M M}^{s *}\right)$, then
$o\left(x_{M}\right) \equiv e^{-\Delta_{U M}} \psi_{x_{M}}^{*}\left(x_{M}\right) \frac{\partial}{\partial x_{U}} \bar{r}_{U}\left(\psi^{*}\left(x_{M}\right), m_{U}^{*}\left(\psi^{*}\left(x_{M}\right)\right)\right)-\frac{\partial}{\partial x_{M}} \bar{r}_{M}\left(x_{M}, m_{M}^{*}\left(x_{M}\right)\right)=0$,
where $\psi_{x_{M}}^{*}\left(x_{M}\right)=\frac{\partial}{\partial x_{M}} \psi^{*}\left(x_{M}\right)$.
Proof. Consider such family $S_{M M}\left(\cdot ; t_{M}\right)$ that $x_{M M}^{c}\left(t_{M}\right)=x_{M M}^{c *}, S_{M M}\left(0 ; t_{M}\right)=$ $S_{M M}^{*}(0), \frac{\partial}{\partial x_{M}} S_{M M}\left(x_{M M}^{c *} ; t_{M}\right)=\frac{\partial}{\partial x_{M}} S_{M M}^{*}\left(x_{M M}^{c *}\right)$, and $S_{M M}\left(x_{M} ; t_{M}\right)=S_{M M}^{*}\left(x_{M}\right)$ for all $x_{M} \geq x_{M M}^{s *}$. This implies that $x_{M M}^{c}, x_{U M}^{c}$ and $S_{M M}(0)$ do not change with t_{M}, and thus neither does $S_{U M}(0)$, because $C\left(x_{U M}^{c *}, x_{M M}^{c *}\right)=1-S_{U M}(0)-S_{M M}(0)$ by the definition of $S_{U M}\left(S_{M M}\right)$. It follows that Equation (A.10) reduces to

$$
\begin{align*}
\frac{\partial}{\partial t_{M}} V\left(t_{M}\right)= & e^{-\Delta_{U M}} \int_{x_{M M}^{c}}^{x_{M M}^{s}} \frac{\partial}{\partial t_{M}} S_{M M}\left(x_{M}\right) \psi^{\prime}\left(x_{M}\right) \frac{\partial}{\partial x_{U}} \bar{r}_{U}\left(\psi\left(x_{M}\right), m_{U}\left(\psi\left(x_{M}\right)\right)\right) \mathrm{d} x_{M} \\
& -\int_{x_{M M}^{c}}^{x_{M M}^{s}} \frac{\partial}{\partial t_{M}} S_{M M}\left(x_{M}\right) \frac{\partial}{\partial x_{M}} \bar{r}_{M}\left(x_{M}, m_{M}\left(x_{M}\right)\right) \mathrm{d} x_{M} \tag{A.13}
\end{align*}
$$

Suppose that there exists some $x_{M} \in\left(x_{M M}^{c *}, x_{M M}^{s *}\right)$ such that $o\left(x_{M}\right) \neq 0$. Note that because $\psi(\cdot)$ is continuously differentiable, $o(\cdot)$ is continuous. This implies that there exists some $\delta>0$ and some \bar{x}_{M} such that $o^{*}\left(x_{M}\right) \neq 0$ for all $x_{M} \in\left[\bar{x}_{M}-\delta, \bar{x}_{M}+\delta\right]$. We can always construct a feasible family $S_{M M}\left(\cdot ; t_{M}\right)$ such that for all $t_{M}^{\prime \prime}>t_{M}^{\prime}, \operatorname{sgn}\left(S_{M M}\left(x_{M} ; t_{M}^{\prime}\right)-S_{M M}\left(x_{M} ; t_{M}^{\prime \prime}\right)\right)=\operatorname{sgn}\left(o\left(x_{M}\right)\right)$ and
$t_{M}^{*} \in(0,1) .{ }^{9}$ For such a family (a) $\frac{\partial}{\partial t_{M}} V\left(t_{M}^{*}\right)=0$, and (b) $\frac{\partial}{\partial t_{M}} V\left(t_{M}^{*}\right) \neq 0$ by Equation (A.13); contradiction!

We are now ready to show that for any interior ($S_{U U}^{*}, S_{M M}^{*}$) there exists a pair of wage functions $\left(w_{U}, w_{M}\right)$ which together with $\left(S_{U U}^{*}, S_{M M}^{*}\right)$ satisfy conditions (1), (2) and (4) of the equilibrium. As discussed on page 4 of this Appendix, the wage functions w_{U}, w_{M} for which conditions (2) and (4) of equilibrium are satisfied, are given by Equation (6), where $\bar{w}_{M}^{c}\left(x_{M}^{c}\right)=\bar{w}_{M}^{c}$ and $\bar{w}_{U}\left(x_{U}^{c}\right)=$ $\min \left\{\bar{w}_{U}^{c}, e^{\Delta_{U M}}\left(\bar{w}_{M}^{c}+\delta_{U M}\right)\right\}$. For condition (1) to be satisfied, it must be the case that these w_{U}, w_{M} satisfy (i) Equation (18) as well as (ii) $\bar{w}_{U}\left(x_{U U}^{c *}\right)=\bar{w}_{U}^{c}$.

First, consider $\frac{\partial}{\partial t_{U}} V\left(t_{U}\right)$. It follows immediatelly from Equation (A.11) that

$$
\begin{equation*}
\bar{r}_{U}\left(x_{U}^{c *}, m_{U}\left(x_{U}^{c *}\right)\right)+\int_{x_{U}^{c *}}^{x_{U U}^{c *}} \frac{\partial}{\partial x_{U}} \bar{r}_{U}\left(x_{U}, m_{U}\left(x_{U}\right)\right) \mathrm{d} x_{U}=\bar{w}_{U}^{c} . \tag{A.14}
\end{equation*}
$$

Let us turn attention to $\frac{\partial}{\partial t_{M}} V\left(t_{M}\right)$ and consider such family $S_{M M}\left(\cdot ; t_{M}\right)$ that $S_{M M}\left(x_{M M}^{c *} ; t_{M}\right)=S_{M M}^{*}\left(x_{M M}^{c *}\right), x_{U M}^{c}\left(t_{M}\right)=x_{U M}^{c *}, S_{M M}\left(x_{M} ; t_{M}\right)=S_{M M}^{*}\left(x_{M}\right)$ for all $x_{M} \geq x_{M M}^{s *}$ and $t_{M}^{*} \in(0,1)$. This implies that (a) $\frac{\mathrm{d}}{\mathrm{d} t_{M}} S_{U M}\left(0 ; t_{M}^{*}\right)=0$ and (b) $\frac{\mathrm{d}}{\mathrm{d} t_{M}} S_{M M}(0)=\frac{\partial}{\partial t_{M}} x_{M M}^{c}\left(t_{M}\right) \frac{\partial}{\partial x_{M}} C\left(x_{M M}^{c}\left(t_{M}\right), x_{M U}^{c^{*}}\right)$. Substituting this and Equation (A.12) into Equation (A.10) yields

$$
\begin{equation*}
\bar{r}_{M}\left(x_{M}^{c *}, m_{M}\left(x_{M}^{c *}\right)\right)=\bar{w}_{M}^{c} . \tag{A.15}
\end{equation*}
$$

Consider such family $S_{M M}\left(\cdot ; t_{M}\right)$ that $S_{U M}\left(0 ; t_{M}\right) \neq S_{U M}^{*}(0)$ for $t_{M} \neq t_{M}^{*}$, and $S_{M M}\left(x_{M} ; t_{M}\right)=S_{M M}^{*}\left(x_{M}\right)$ for all $x_{M} \geq x_{M M}^{s *}$. Then subsituting Equations (A.12) and (A.15) into Equation (A.10) yields

$$
\begin{align*}
\frac{\partial}{\partial t_{M}^{*}} V\left(t_{M}^{*}\right)= & e^{-\Delta_{U M}} \frac{\partial}{\partial t_{M}^{*}} S_{U M}(0)\left[\int_{x_{U}^{c *}}^{x_{U M}^{c *}} \frac{\partial}{\partial x_{U}} \bar{r}_{U}\left(x_{U}, m_{U}\left(x_{U}\right)\right) \mathrm{d} x_{U}+\bar{r}_{U}\left(x_{U}^{c *}, m_{U}\left(x_{U}^{c *}\right)\right)\right] \\
& -\frac{\partial}{\partial t_{M}^{*}} S_{U M}(0)\left(\bar{w}_{M}^{c}+\delta_{U M}\right)=0 \tag{A.16}
\end{align*}
$$

${ }^{9}$ That is, $\left.S_{M M}\left(x_{M} ; t_{M}^{\prime \prime}\right)-S_{M M}\left(x_{M} ; t_{M}^{\prime}\right)\right)=0$ only if $o\left(x_{M}\right)=0$, and if $o\left(x_{M}\right) \neq 0$ then $\left.S_{M M}\left(x_{M} ; t_{M}^{\prime \prime}\right)-S_{M M}\left(x_{M} ; t_{M}^{\prime}\right)\right)$ has the same sign. To construct such a family, consider any interval $\left[x_{M}^{\prime}, x_{M}^{\prime \prime}\right] \subset\left[x_{M M}^{c *}, x_{M M}^{s *}\right]$ such that $o\left(x_{M}^{\prime}\right)=o\left(x_{M}^{\prime \prime}\right)=0$ and $o\left(x_{M}\right) \neq 0$ and is of the same sign for all $x_{M} \in\left[x_{M}^{\prime}, x_{M}^{\prime \prime}\right]$. Then let $\psi\left(x_{M} ; t_{M}\right)$ solve

$$
\begin{aligned}
\frac{\partial}{\partial x_{M}} C\left(\psi\left(x_{M}, t_{M}\right), x_{M}\right)= & \operatorname{sgn}\left(o\left(x_{M}\right)\right)\left(x_{M}-\frac{x_{M}^{\prime}+x_{M}^{\prime \prime}}{2}\right)^{3}\left(x_{M}-\bar{x}_{M}^{\prime}\right)^{2}\left(x_{M}-\bar{x}_{M}^{\prime \prime}\right)^{2}\left(\left(t_{M}-1\right) \underline{\epsilon}+t_{M} \bar{\epsilon}\right) \\
& -\frac{\partial_{+}}{\partial x_{M}} S_{M M}^{*}\left(x_{M}\right)
\end{aligned}
$$

for some positive but very small $\epsilon, \bar{\epsilon}$. If x_{M} belongs to an interval on which $o\left(x_{M}\right)=0$, then set $\psi\left(x_{M} ; t_{M}\right)=\psi^{*}(x(M))$.

Substituting Equation (A.14) into (A.16) yields

$$
\begin{equation*}
e^{\Delta_{U M}}\left(\bar{w}_{M}^{c}+\delta_{U M}\right)-\bar{w}_{U}^{c}=\bar{w}_{U}\left(x_{U M}^{c *}\right)-\bar{w}_{U}\left(x_{U U}^{c *}\right), \tag{A.17}
\end{equation*}
$$

which implies that $x_{U M}^{c *} \geq x_{U U}^{c *}$ if and only if $e^{\Delta_{U M}}\left(\bar{w}_{M}^{c}+\delta_{U M}\right) \geq \bar{w}_{U}^{c}$.
Suppose that $x_{U M}^{c *} \geq x_{U U}^{c *}$. Then $\bar{w}_{U}\left(x_{U}^{c *}\right)=\bar{w}_{U}^{c}$ and condition (ii) follows immediately. Further, Equation (A.14) reduces to $\bar{r}_{U}\left(x_{U}^{c *}, m_{U}\left(x_{U}^{c *}\right)\right)=\bar{w}_{U}^{c}$. Substituting this into Equation (A.16) ensures that $\bar{w}_{U}\left(x_{U M}^{c *}\right)=e^{\Delta_{U M}}\left(\bar{w}_{M}\left(x_{M M}^{c *}\right)+\delta_{U M}\right)$. As Equation (A.12) is the same as the first derivative of Equation (18) on $\left(x_{U M}^{c *}, x_{U M}^{s *}\right)$, it follows that condition (ii) must be satisfied as well.

Suppose that $x_{U M}^{c *}<x_{U U}^{c *}$. Then $\bar{w}_{U}\left(x_{U M}^{c *}\right)=e^{\Delta_{U M}}\left(\bar{w}_{M}\left(x_{M M}^{c *}\right)+\delta_{U M}\right)$, which reduces Equation (A.17) to $\bar{w}_{U}\left(x_{U U}^{c *}\right)=\bar{w}_{U}^{c}$. Again, Equation (A.12) is the same as the first derivative of Equation (18) on $\left(x_{U M}^{c *}, x_{U M}^{s *}\right)$, ensures that condition (ii) must be satisfied as well.
"Outer" Problem The proof that the maximizers of the outer problem satisfy condition (3) of the equilibrium, follows the logic of the proof of Lemma OA. 11 in Gola (2019). Consider some maximizer $\left(R_{U}^{F *}, R_{M}^{F *}\right)$ of the outer problem and some $R_{i}^{F^{\prime}}$. Define the function $R_{i}^{F}\left(t_{R}\right)=t_{R} R_{i}^{F *}+\left(1-t_{R}\right) R_{i}^{F^{\prime}}$. Note that

$$
\bar{T}_{i}(A) \equiv \int_{1}^{0} \bar{r}_{i}\left(x_{i}, \max \left\{1-S_{i}\left(x_{i}\right) / R_{i}^{F}, 0\right\}\right) \mathrm{d} S_{i}\left(x_{i}\right)=\frac{T_{i}(A)}{P_{i}} \quad \text { if } R_{i}^{F}>0
$$

which allows us to drop condition (4) from the definition of the set of feasible allocations as \mathbb{A}. Denote this modified set of feasible allocations by $\overline{\mathbb{A}}$, and by \bar{V} the the total weighted net revenue function, in which T_{i} has been replaced by \bar{T}_{i}. Then define

$$
V^{I}\left(S_{U U}, S_{M M}, t_{R}\right)=\max _{S_{U M} \in \mathbb{S}_{U M}\left(S_{M M}\right)} \bar{V}\left(S_{U U}, S_{U M}, S_{M M}, R_{U}^{F}\left(t_{R}\right), R_{M}^{F}\left(t_{R}\right)\right)
$$

It is easy to show that $V^{I}\left(S_{U U}, S_{M M}, t_{R}\right)$ is differentiable for all t_{R} but at most $4\left(t_{R} \in\{0,1\}\right.$ and $\left.R_{i}^{F}\left(t_{R}\right)=S_{i}(0)\right)$, and also that whenever $V_{t}^{I}\left(S_{U}, S_{M}, t\right)$ does exist we have that

$$
\begin{aligned}
V_{t_{R}}^{I}\left(S_{M}, S_{S}, t\right)= & \left(R_{U}^{F *}-R_{U}^{F^{\prime}}\right)\left(\frac{1}{P_{U}} \pi_{U}^{E}\left(S_{U}, R_{U}(t)\right)-c_{U}^{e}\right) \\
& +\left(R_{M}^{F *}-R_{M}^{F^{\prime}}\right)\left(\frac{1}{P_{M}} \pi_{M}^{E}\left(S_{S}, R_{S}(t)\right)-c_{M}^{e}\right),
\end{aligned}
$$

where
$\pi_{i}^{E}\left(S_{i}, R_{i}^{F}\right)= \begin{cases}\int_{0}^{1} \int_{0}^{h} \frac{\partial}{\partial h} r_{i}\left(S_{i}^{-1}\left((1-p) R_{i}^{F}\right), p\right) \mathrm{d} p+r_{i}\left(S_{i}^{-1}\left(R_{i}^{F}\right), 0\right) \mathrm{d} h & \text { for } R_{i} \in\left(0, S_{i}(0)\right), \\ \int_{1-\frac{S_{i}(0)}{R_{i}^{F}}}^{R_{1-\frac{S_{i}(0)}{}}^{R_{i}^{F}}} \frac{\partial}{\partial h} r_{i}\left(S_{i}^{-1}\left((1-p) R_{i}^{F}\right), p\right) \mathrm{d} p \mathrm{~d} h & \text { for } R_{i}^{F}>S_{i}(0) .\end{cases}$
Thus $V\left(S_{U U}, S_{M M}, \cdot\right)$ is absolutely continuous for any $\left(S_{U U}, S_{M M}\right) \in \overline{\mathbb{A}}$ and any choice of $R_{i}^{F^{\prime}}$. Clearly, $\frac{1}{P_{i}} \pi_{i}^{E}\left(S_{i}, R_{i}^{F}(t)\right)-c_{i}^{e} \in\left[-c_{i}, \bar{r}_{i}(1,1)-c_{i}^{e}\right]$, implying

$$
\left|V_{t_{R}}\left(S_{U U}, S_{M M}, t\right)\right| \leq\left(R_{U}^{F^{*}}-R_{U}^{F^{\prime}}\right) \max \left\{c_{U}^{e}, \bar{r}_{U}(1,1)\right\}+\left(R_{M}^{F *}-R_{M}^{F^{\prime}}\right) \max \left\{c_{M}^{e}, \bar{r}_{M}(1,1)\right\}
$$

which proves

$$
V\left(t_{R}\right) \equiv \max _{\left(S_{U U}, S_{M M}\right) \in \mathbb{A}} V^{I}\left(\left(S_{U U}, S_{M M}, t_{R}\right)\right.
$$

is absolutely continuous by Theorem 2 in Milgrom and Segal (2002).
Define $S_{U U}\left(t_{R}\right), S_{M M}\left(t_{R}\right) \in \arg \max _{\left(S_{U U}, S_{M M}\right) \in \mathbb{A}} V^{I}\left(\left(S_{U U}, S_{M M}, t_{R}\right), T\left(t_{R}\right) \equiv\right.$ $V\left(t_{R}\right)+c_{U}^{e} R_{U}^{F}\left(t_{R}\right)+c_{M}^{e} R_{M}^{F}\left(t_{R}\right)$ and pick any $t \in(0,1)$ for which $V(\cdot)$ is differentiable. Consider two $\tilde{c}_{U}^{e}, \tilde{c}_{M}^{e} \in \mathbf{R}_{\geq 0}$ such that $\tilde{c}_{i}^{e}=\pi_{i}^{E}\left(R_{U}^{F}(t), R_{M}^{F}(t)\right)$. For entry $\operatorname{costs} \tilde{c}_{M}^{e}, \tilde{c}_{S}^{e}$, the allocation $A(t)=\left(S_{U U}(t), S_{U M}\left(S_{M M}(t)\right), S_{M M}(t), R_{U}^{F}(t), R_{M}^{F}(t)\right)$ is a partial labor market equilibrium, implying that it maximizes the function $\tilde{V}(t)=T(t)-\tilde{c}_{U}^{e} R_{U}^{F}(t)-\tilde{c}_{M}^{e} R_{M}^{F}(t)$. Clearly, both $\tilde{V}(\cdot)$ and $T(\cdot)$ are differentiable at t as well. It follows from first-order conditions that $\tilde{V}_{t_{R}}\left(t_{R}\right)=0$ implying that

$$
\begin{aligned}
T_{t_{R}}\left(t_{R}\right) & =\left(R_{U}^{F *}-R_{U}^{F^{\prime}}\right) \tilde{c}_{U}^{e}+\left(R_{M}^{F *}-R_{M}^{F^{\prime}}\right) \tilde{c}_{M}^{e} \\
& =\left(R_{U}^{F *}-R_{U}^{F^{\prime}}\right) \pi_{U}^{E}\left(R_{U}^{F}(t), R_{M}^{F}(t)\right)+\left(R_{M}^{F *}-R_{M}^{F^{\prime}}\right) \pi_{M}^{E}\left(R_{U}^{F}(t), R_{M}^{F}(t)\right)
\end{aligned}
$$

This proves that
$V_{t_{R}}(t)=\left(R_{U}^{F *}-R_{U}^{F^{\prime}}\right)\left(\pi_{U}^{E}\left(R_{U}^{F}(t), R_{M}^{F}(t)\right)-c_{U}^{e}\right)+\left(R_{M}^{F *}-R_{M}^{F^{\prime}}\right)\left(\pi_{M}^{E}\left(R_{U}^{F}(t), R_{M}^{F}(t)\right)-c_{M}^{e}\right)$.
Note, by the way, that because we can induce an equilibrium for any values of $\left(R_{U}^{F}, R_{M}^{F}\right)$ by an appropriate choice of $\left(\tilde{c}_{U}^{e}, \tilde{c}_{M}^{e}\right)$, it follows from the "if" part of this proof, that the set $\arg \max _{\left(S_{U U}, S_{M M}\right) \in \mathbb{A}} V^{I}\left(S_{U U}, S_{M M}, t_{R}\right)$ is a singleton.

Now, let us show that if $R_{U}^{F *}>0$ then $\pi_{M}^{E} \geq c_{M}^{e} P_{M}$. First, pick some $R_{M}^{F^{\prime}}<R_{M}^{F *}$ and define $V(t)$ for $\left(R_{U}^{F *}, R_{M}^{F *}\right)$ and $\left(R_{U}^{F *}, R_{M}^{F^{\prime}}\right.$). From the definition of maximum follows that there exists some $t_{R}^{\prime} \in(0,1)$ such that for any $t_{R}>t_{R}^{\prime}$ we have $\pi_{M}^{E}\left(R_{U}^{F}\left(t_{R}\right), R_{M}^{F}\left(t_{R}\right)\right) \geq c_{M}^{e} P_{M}$. Recall that for any allocation $A(t)$ the average profit of firms in country i is given by Equation (A.9); it follows from
continuity of $\left(S_{U U}(t), S_{M M}(t)\right)$ that $\pi_{M}^{E}\left(R_{U}^{F *}, R_{M}^{F *}\right) \geq c_{M}^{e} P_{M} .{ }^{10}$ It remains to show that if $R_{U}^{F *} \geq 0$ then $\pi_{M}^{E} \leq c_{M}^{e} P_{M}$, but the proof is completely analogous, because $\pi_{i}^{E}(t)$ is continuous even for $R_{M}^{F}=0$, in the sense that the limit of the average profit that holds for $R_{M}^{F}>0$ as $R_{M}^{F} \rightarrow 0$ is an equilibrium for $R_{M}^{F}=0 .{ }^{11}$ The proof for U.S. is analogous.

Existence

Consider the set $\overline{\mathbb{A}}\left(R_{U}^{F}, R_{M}^{F}\right)$ of all functions $S_{U U}, S_{U M}, S_{M M}$ that meet conditions (1)-(4) on page 5 of this Appendix given $\left(R_{U}^{F}, R_{M}^{F}\right)$. As all functions in $\overline{\mathbb{A}}\left(R_{U}^{F}, R_{M}^{F}\right)$ are absolutely continuous, differentiable almost everywhere and their derivative lies in $[-1,0]$, it follows that they are Lipschitz continuous with the same Lipschitz constant. Hence, by the Arzela-Ascoli theorem $\overline{\mathbb{A}}\left(R_{U}, R_{M}\right)$ is compact. Therefore, it follows from the Extreme Value theorem that the set

$$
V\left(R_{U}^{F}, R_{M}^{F}\right) \equiv \underset{\left(S_{U M}, S_{U M}, S_{M M}\right) \in \overline{\mathbb{A}}\left(R_{U}^{F}, R_{M}^{F}\right)}{\arg \max } V\left(S_{U U}, S_{U M}, S_{M M}, R_{U}^{F}, R_{M}^{F}\right)
$$

is non-empty. We have shown on page 13 that $V\left(R_{U}^{F}, R_{M}^{F}\right)$ is a singleton, and in footnote 10 that it is continuous in R_{U}^{F}, R_{M}^{F}. Thus, employing the same logic as in the proof of Theorem OA. 2 in Gola (2019) it can be easily shown that there exists a compact set $\bar{R} \in \mathbf{R}^{\mathbf{2}} \geq 0$ such that:

$$
\max _{\bar{R}} V\left(R_{U}, R_{M}\right)=\max _{\mathbf{R}^{2} \geq 0} V\left(R_{U}, R_{M}\right) .
$$

It follows from the Extreme Value theorem that $\arg \max _{\mathbf{A}} V(A)$ is non-empty. It follows trivially from Proposition 1 that the equilibrium exists and is unique.

Comments on Efficiency

It is worth stressing that, in contrast to Proposition OA. 8 in Gola (2019), our Proposition 1 does not imply that the partial labor market equilibrium maximizes total welfare (for given prices): The total welfare function would weight the welfare of Mexican stayers and United States citizens in the same way, which is not the

[^5]case in Equation (22). In short, assigning a marginal Mexican worker to the United States creates additional revenue $\left(\bar{w}_{U}\left(x_{U}\right)\right)$, an additional pecuniary migration cost $\left(\delta_{U M}\right)$, and the additional utility cost (worth $\left(1-e^{-\Delta_{U M}}\right)\left(\bar{w}_{U}\left(x_{U}\right)-\delta_{U M}\right)$ units of the consumption good). These are the only changes that are reflected in the no-arbitrage condition (Equation (18)); on top of that, however, the addition of a marginal Mexican worker changes the wages of all other Mexican workers in the United States, and thus also the monetary equivalent of the utility migration cost for all of them. This additional change in costs is not included in the no-arbitrage condition, creating a wedge between maximizing revenue net of all the costs and the equilibrium. In broad strokes, this is reminiscent of the results in Dupuy et al. (2017), where imperfect transferability of utility also rules out the efficiency of the equilibrium, but the equilibrium nevertheless corresponds to the optimum of an assignment problem in which the welfare of all agents is appropriately weighted.

Proof of Theorem 2

Define a map $\mathscr{F}(\mathbf{P}) \equiv Y_{W}-p_{W}^{1-\varepsilon} \sum_{k} Y_{k} P_{k}^{\varepsilon-1} \tau_{k W}^{1-\varepsilon}$. Because $p_{W} q_{W}=Y_{W}$ Equation (13) for $i=W$ can be rewritten as

$$
\mathscr{F}(\mathbf{P})=0 .
$$

Substituting this into Equation (23) results in

$$
\begin{equation*}
P_{i}=\left[\frac{\left(\tau_{i U}\right)^{1-\varepsilon} Y_{U}}{a \mathscr{F}(\mathbf{P})+\sum_{k} Y_{k} \tau_{k U}^{1-\varepsilon} P_{k}^{\varepsilon-1}}+\frac{\left(\tau_{i M}\right)^{1-\varepsilon} Y_{M}}{a \mathscr{F}(\mathbf{P})+\sum_{k} Y_{k} \tau_{k M}^{1-\varepsilon} P_{k}^{\varepsilon-1}}+\left(\tau_{i W} p_{W}\right)^{1-\varepsilon}\right]^{\frac{1}{1-\varepsilon}}, \tag{A.19}
\end{equation*}
$$

where $a \in\left(0, \min _{i \in\{U, M, W\}, j \in\{U, M\}}\left\{\left(\frac{\tau_{j i}}{p_{W} \tau_{i W}}\right)^{1-\varepsilon}\right\}\right)$. It is easy to show that any vector $\mathbf{P}=\left(P_{U}, P_{M}, P_{W}\right)$ that solves the system of three Equations given by (A.19) must also satisfy Equation (13). ${ }^{12}$ Therefore, it follows trivially that any such \mathbf{P} solves also the system given by (23).

Lemma 5. Consider the set \mathbb{P} of all $\mathbf{P} \in \mathbf{R}^{\mathbf{3}}>0$ that solve Equation (A.19) for all $i \in\{U, M, W\}$. The set \mathbb{P} is non-empty.
Proof. Consider the interval $I_{i}=\left[\left[\frac{\left(\tau_{i U}\right)^{1-\varepsilon} Y_{U}}{a Y_{W}}+\frac{\left(\tau_{i M}\right)^{1-\varepsilon} Y_{M}}{a Y_{W}}+\left(\tau_{i W} p_{W}\right)^{1-\varepsilon}\right]^{\frac{1}{1-\varepsilon}}, \tau_{i W} p_{W}\right]$

[^6]and define the map $\mathscr{T}: I_{U} \times I_{M} \times I_{W} \rightarrow I_{U} \times I_{M} \times I_{W}$ such that
\[

$$
\begin{equation*}
\mathscr{T}_{i}(\mathbf{P}) \equiv\left[\frac{\left(\tau_{i U}\right)^{1-\varepsilon} Y_{U}}{a \mathscr{F}(\mathbf{P})+\sum_{k} Y_{k} \tau_{k U}^{1-\varepsilon} P_{k}^{\varepsilon-1}}+\frac{\left(\tau_{i M}\right)^{1-\varepsilon} Y_{M}}{a \mathscr{F}(\mathbf{P})+\sum_{k} Y_{k} \tau_{k M}^{1-\varepsilon} P_{k}^{\varepsilon-1}}+\left(\tau_{i W} p_{W}\right)^{1-\varepsilon}\right]^{\frac{1}{1-\varepsilon}} \cdot{ }^{13} \tag{A.20}
\end{equation*}
$$

\]

Clearly, \mathscr{T} is increasing. Thus, the Lemma follows from Tarski's (1955) fixed point theorem.

The largest vector of price indexes solving Equation (A.19) for $Y_{U}, Y_{M}, Y_{W} \in$ $\mathbb{R}_{\geq 0}^{3}$ is denoted by $\overline{\mathbf{P}}\left(Y_{U}, Y_{M}, Y_{W}\right)$, and is continuous in all arguments. Define the map $\mathscr{B}_{i}: \mathbb{R}_{\geq 0}^{3} \rightarrow \mathbb{R}_{\geq 0}$ such that $\mathscr{B}_{i}(\mathbf{Y})=\sum_{k \in\{U, M, W\}} \frac{Y_{k} \tau_{k i t}^{1-\varepsilon}}{P_{k}(\mathbf{Y})^{1-\varepsilon}}$. Note that \mathscr{B}_{i} is homogenous of degree 1 (because $\bar{P}(\cdot)$ is homogeneous of degree zero) and increasing. Therefore, $\max _{\mathbf{Y} \leq \lambda 1} \mathscr{B}_{i}(\mathbf{Y})=\lambda \mathscr{B}_{i}(\mathbf{1})$.

Denote by $A(\mathbf{Y})$ the allocation that holds in the equilibrium of the partial labor equilibrium under price index vector $\overline{\mathbf{P}}(\mathbf{Y})$ and expenditure vector \mathbf{Y}. Then we can define the map $\mathscr{K}: \mathbb{R}_{\geq 0}^{3} \rightarrow \mathbb{R}_{\geq 0}^{3}$ such that

$$
\mathscr{K}_{i} \equiv \begin{cases}\mathscr{B}_{i}(\mathbf{Y})^{\frac{1}{\varepsilon}} \int_{1}^{0} f_{i}\left(x, 1-S_{i}(x ; \mathbf{Y}) / R_{i}^{F}(\mathbf{Y})\right)^{\frac{\varepsilon-1}{\varepsilon}} \mathrm{~d} S_{i}(x ; \mathbf{Y}) & \text { if } i \in\{U, M\} \\ p_{W} q_{W} & \text { if } i=W\end{cases}
$$

Any fixed point of this map characterizes a general equilibrium of our model.
For $i \in\{U, M\}$ denote $\int_{1}^{0} f_{i}\left(x, 1-S_{i}(x) / R_{i}^{F}\right)^{\frac{\varepsilon-1}{\varepsilon}} \mathrm{~d} S_{i}(x)$ by $Q_{i}\left(S_{i}\right)$. Then $\bar{Q}_{i}=$ $\max _{S_{i} \in \mathbf{S}_{i}} Q_{i}\left(S_{i}\right)$, where \mathbf{S}_{i} is the set of all feasible supply functions in country i. Set

$$
\lambda=\max \left\{\max _{i \in\{U, M\}}\left[\bar{Q}_{i}^{\varepsilon} \mathscr{B}_{i}(\mathbf{1})\right]^{\frac{1}{\varepsilon-1}}, p_{W} q_{W}\right\} .
$$

Thus if $\mathbf{Y} \leq \lambda$ then $\mathscr{K}_{i}(\mathbf{Y}) \leq \lambda .{ }^{14}$ Thus we can define a restriction $\mathscr{K}^{R}:[0, \lambda]^{3} \rightarrow$ $[0, \lambda]^{3}$ of map $\mathscr{K} . \mathscr{K}^{R}$ must have a fixed point by Brouwer's fixed-point theorem, and - therefore - so does $\mathscr{K} .{ }^{15}$ This concludes the existence proof.

It can be easily shown that the equilibrium must be unique if $\tau_{i j}=1$ for all $i, j \in\{U, M, W\}$. First note that then Equation (23) is solved uniquely by $P_{U}=$ $P_{M}=P_{W}$. This further implies that $\mathscr{B}_{U}(\mathbf{Y})=\mathscr{B}_{M}(\mathbf{Y})=\mathscr{B}_{W}(\mathbf{Y}) . \mathscr{F}(\mathbf{P})=0$ gives that $\mathscr{B}_{W}(\mathbf{Y})=p_{W}^{\varepsilon} q_{W}$, which pins down the unique equilibrium.

[^7]
Equilibrium with Empty Mexico

We will now demonstrate that if the transportation costs either to or from Mexico are sufficiently large, then there must exist an equilibrium in which $S_{M}(0)=0$. In what follows we use the notation from the proof of Theorem 2. Consider an auxiliary economy in which $r_{M}^{A}(x, h)=0$ but the rest of the model is unchanged. Trivially, if there exists an equilibrium of the actual model in which $S_{M}(0)=0$, then the vector of equilibrium total expenditures \mathbf{Y}^{A} must satisfy $\mathscr{K}^{A}\left(\mathbf{Y}^{A}\right)=\mathbf{Y}^{A}$, where \mathscr{K}^{A} is the map determining the equilibrium of the auxiliary economy. It follows that \mathbf{Y}^{A} is independent of $\tau_{i M}, \tau_{M i}$ for all $i \in\{U, W\}$; by inspection of Equation (A.19) so are $\bar{P}_{U}\left(\mathbf{Y}^{A}\right), \bar{P}_{W}\left(\mathbf{Y}^{A}\right)$. Suppose that $\tau_{W M}=\tau_{M W}=\tau_{U M}=$ $\tau_{M U}=a$. Then

$$
B_{M}=a^{\frac{1-2 \varepsilon}{\varepsilon}} \frac{\left(\sum_{k \in\{U, W\}} Y_{k}^{A}\left(\bar{P}_{k}\left(\mathbf{Y}^{A}\right)\right)^{\varepsilon-1}\right)^{1 / \varepsilon}}{\left[Y_{U}^{A}\left(\sum_{k \in\{U, W\}} Y_{k}^{A}\left(\bar{P}_{k}\left(\mathbf{Y}^{A}\right) / \tau_{U k}\right)^{\varepsilon-1}\right)^{-1}+p_{W}^{1-\varepsilon}\right]^{\frac{1}{1-\varepsilon}}}
$$

Thus, if
$\left.a \geq\left(\bar{U}_{M}+c_{M}^{f}\right) f_{M}(1,1)^{\frac{1-\varepsilon}{\varepsilon}} \frac{\left[Y_{U}^{A}\left(\sum_{k \in\{U, W\}} Y_{k}^{A}\left(\bar{P}_{k}\left(\mathbf{Y}^{A}\right) / \tau_{U k}\right)^{\varepsilon-1}\right)^{-1}+p_{W}^{1-\varepsilon}\right]^{\frac{1}{1-\varepsilon}}}{\left(\sum_{k \in\{U, W\}} Y_{k}^{A}\left(\bar{P}_{k}\left(\mathbf{Y}^{A}\right)\right)^{\varepsilon-1}\right)^{1 / \varepsilon}}\right)^{\frac{\varepsilon}{2 \varepsilon-1}}$
then $\bar{w}_{M}(1) \leq r_{M}(1,1) / P_{M} \leq \bar{U}_{M}$ and thus $S_{M}(0)=0$ as required.

B Copula Functions

Figure B.1: Two-dimensional Distributions for Clayton, Gaussian and Gumbel Copulas

Note: Figure B. 1 presents the distributions of skills assuming different copula functions (row 1: Clayton, row 2: Gaussian, row 3: Gumbel), and low (column 1) and high (column 2) correlations between skills.

C Calibration Details

Mapping Model Moments to Data The calibration represents a static state of the Mexican and U.S. economies in 2015. We differentiate between two types of empirical moments that we use to calibrate the model. First, we collect a set of observables that directly determine model parameters. We call this set of observables group (A) in Table C.1. Second, we collect datapoints that correspond to moments generated by the model, which enables us to identify the remaining model parameters, gathered in group (B).

The population data for the United States and Mexico for 2015 are collected from The Database in Immigrants in OECD and non-OECD Countries (DIOC). As indicated in the main text, populations are divided into the group of U.S. residents, Mexican stayers and Mexican immigrants to the United States. By normalizing Mexico's population to unity, we set the size of the total U.S. population to $R_{U}^{W}=$ 2.850. DIOC indicates that almost 14% of all Mexicans live in the US, setting $S_{U M}=0.139$. The shares of unemployed in the US and Mexico equal to 5.75%, and 3.45%, respectively. After accounting for the employment and migration status, the workforce in both countries equals to: $S_{M}(0)=0.827$ and $S_{U}(0)=$ $2.688+0.139=2.827$, respectively.

The measures of potential firms are set equal to the number of employed and unemployed individuals plus the number of active job vacancies (available for the United States from the Bureau of Labor Statistics, for Mexico, we generate a proportional number of vacancies). This yields $R_{U}^{F}=3.15$ and $R_{M}^{F}=0.99$.

For all wage distributions we remove 2 percent of the lowest and highest values to skip outliers. Then, we smooth the data by interpolating the missing values locally. Finally, we compute kernel densities that allow us to generate $K=$ 100,000 density points for 100,000 quantiles of each distribution. The constructed wage distributions give us the minimal and maximal values of annual wages: in the United States the minimal (maximal) wage is equal to 5, 760 USD (204, 920 USD), whereas in Mexico it equals 1,230 USD (42,770 USD).

Several data inputs are required to calibrate the trade module. First, we exploit the international trade data from TiVA database by OECD and we compute bilateral trade costs. Second, the price indexes in Mexico and US are normalized to unity, as all monetary values (including wages in Mexico) are expressed in PPP USD. Third, the price index in the ROW is determined by the trade-weighted purchasing power parity (PPP) differentials with the United States, resulting in $P_{W}=0.685 \cdot P_{U}$. We also take $Y_{W}=4 \cdot Y_{U}$ based on the OECD quotes of GDPs.

Finally, we compute the conditional probabilities of emigration across Mexican wages (the probability of being classified in a particular quantile of the Mexican stayers' wage distribution conditional on migrating). We use the Mexican Migration Project (MMP), which collects the information on wages of Mexican immigrants to the United States. Our observations include those individuals who migrated between 2009 and 2013. We eploit their Mexican wage rates before moving, and compute their frequency in eleven quantiles of Mexican stayers' wage distribution: $q \in\{0.05,0.1,0.2, \ldots, 0.9,0.95\}$. These probabilities, which formally take the form of $\partial C\left(\psi\left(G_{M}^{-1}(x)\right), G_{M}^{-1}(x)\right) / \partial x_{M}$, reflect migrants' self-selection.

Table C.1: Empirical Moments for Model Calibration

Object Name	Symbol	Value US	Value MEX	Source	Group
Demographics					
Total Population	R_{i}^{W}	2.850	1.000	DIOC	(A)
Working Population	$S_{i i}(0)$	2.688	0.827	"	(A)
Structure of GDP					
Wage Share	$w_{i}^{\text {share }}$	0.56	0.52	OECD \& FRED	(B)
Profit Share	$\pi_{i}^{\text {share }}$	0.27	0.305	"	(A)
Capital Investment Share:	$c i_{i}^{\text {share }}$	0.17	0.175	"	(A)
Firms					
Fixed Production Costs	c_{i}^{f}	5, 062	1,584	imp.	(B)
Potential Firms	R_{i}^{F}	3.150	0.990	DIOC \& BoLS	(A)
Labor Market					
Unemployment Rate	u_{i}	5.75\%	3.45\%	DIOC \& LFS	(A)
Minimal Wage	w_{i}^{c}	\$5,760	\$1,230	IPUMS	(B)
Maximal Wage	w_{i}^{m}	\$204, 920	\$42, 770	"	(A), (B)*
Object Name	Symbol		lue	Source	Group
Migration, Trade, and the Rest of World					
Migration from MEX to US	$S_{U M}(0)$		38	DIOC	(B)
Goods' Elasticity of Substitution	ε			literature	(A)
Price Index, ROW	P_{W}			WITS \& WDI	(A)
Gross Domestic Product, ROW	Y_{W}		Y_{U}	TiVA	(A)
Bilateral Trade Matrix	$Y_{i j}$			"	(A)
Wage Distributions					
Wage Distribution U.S. Residents	$w_{U U}(\cdot)$			IPUMS	(B)
Wage Distribution MEX Immigrants	$w_{U M}(\cdot)$			"	(B)
Wage Distribution MEX Residents	$w_{M M}(\cdot)$			IPUMSint	(B)
Copula					
Conditional Probability of Migration	$P(\cdot)$		-	MMP	(B)

Notes: imp. $=$ imputation; DIOC $=$ Database on Immigrants in OECD and non-OECD Countries by the OECD; BoLS = Bureau of Labor Statistics by U.S. Dep. of Labor; U.S. census = U.S. census Bureau; FRED = The Federal Reserve Bank of St. Louis; MES = Mexico Enterprise Survey by the World Bank; LFS = Labor Force Survey by Eurostat; IPUMS and IPUMSint by Institute for Social Research and Data Innovation; WITS = World Integrated Trade Solutions by the World Bank; WDI = World Development Indicators by the World Bank; TiVA = Trade in Value Added by the OECD; MMP = Mexican Migration Project by Princeton University. *Maximal wage in the US is taken as given, while the maximal wage in Mexico is fitted.

Identification As discussed in the main text, our model requires an identification of nine unknown parameters. Our identification strategy relies on matching five discrete empirical moments, a set of conditional emigration probabilities from Mexico and two distributions (100,000 quantiles for each one), which means that a hypothetical parameter vector that achieves no loss would need to satisfy a system of 200,019 equations. While in our calibration procedure all of these equations matter, the first 19 (spelled out fully in (C.I1)-(C.I9)), would, on their own, identify the model's parameters. And indeed, in our Monte-Carlo calibration procedure, we find very close relations between the moments from the data featured in these 19 equations and parameters $\Xi=\left\{k_{U}, s_{U}, \gamma_{U}, k_{M}, s_{M}, \gamma_{M}, \theta, \delta_{U M}, \Delta_{U M}\right\}$, for $i \in\{U, M\}: k_{i}, s_{i}, \gamma_{i}, \theta, \Delta_{U M}>0 ; \delta_{U M} \in \mathbb{R}$, as depicted in Figure C. 1 and summarized in Table C.2. Some parameters are precisely identified by respective model equations and data moments, other emerge as a solution to a subsystem of simultaneous equations.

$$
\begin{align*}
& e^{-\Delta_{U M}}\left(\hat{w}_{U}^{c} / P_{U}-\delta_{U M}\right)=\hat{w}_{M}^{c} / P_{M}, \tag{C.I1}\\
& e^{-\Delta_{U M}}\left(\hat{w}_{U}^{\max } / P_{U}-\delta_{U M}\right)=\hat{w}_{M}^{\text {max }} / P_{M}, \tag{C.I2}\\
& r_{U}\left(x_{U}^{c}, h_{U}^{c} ; k_{U}, s_{U}, \gamma_{U}\right)=\hat{w}_{U}^{c}+P_{U} \hat{c}_{U}^{f}, \tag{C.I3}\\
& r_{M}\left(x_{M}^{c}, h_{M}^{c} ; k_{M}, s_{M}, \gamma_{M}\right)=\hat{w}_{M}^{c}+P_{M} \hat{c}_{M}^{f}, \tag{C.I4}\\
& \hat{w}_{M}^{\text {max }}-\hat{w}_{M}^{c}=\int_{x_{M}^{c}}^{1} \partial / \partial x_{M} r_{M}\left(r, m_{M}(r) ; k_{M}, s_{M}, \gamma_{M}\right) \mathrm{d} r, \tag{C.I5}\\
& \hat{S}_{U M}\left(x_{U M}^{c}\right)=\int_{x_{U M}^{c}}^{1} \partial / \partial x_{U} C(r, \phi(r)) \mathrm{d} r, \tag{C.I6}\\
& {\left[-\int_{x_{U}^{c}}^{1} w_{U}(r) \mathrm{d} S_{U}(r)\right] \cdot\left[R_{U}^{F} \int_{0}^{1} \pi_{U}(r) \mathrm{d} r\right]^{-1}=\hat{w}_{U}^{\text {share }} / \hat{\pi}_{U}^{\text {share }},} \tag{C.I7}\\
& {\left[-\int_{x_{M}^{c}}^{1} w_{M}(r) \mathrm{d} S_{M}(r)\right] \cdot\left[R_{M}^{F} \int_{0}^{1} \pi_{M}(r) \mathrm{d} r\right]^{-1}=\hat{w}_{M}^{\text {share }} / \hat{\pi}_{M}^{\text {share }},} \tag{C.I8}\\
& \sum_{x \in\{0,0.1, \ldots, 1\}}\left(\partial / \partial x_{M} C\left(\psi\left(G_{M}^{-1}(x)\right), G_{M}^{-1}(x)\right)-\hat{P}(x)\right)^{2} \rightarrow 0 . \tag{C.I9}
\end{align*}
$$

As in every selection model, migration costs, $\Delta_{U M}$ and $\delta_{U M}$ define the shape (the skewness) of Mexicans' wage distributions in Mexico and in the United States. By construction, in our model, these variables also determine the minimal (maximal) wages received by Mexicans in Mexico (in the United States). Equations (C.I1) and (C.I2) are jointly solved by $\Delta_{U M}$ and $\delta_{U M}$ for given values of minimal and maximal wages received by Mexicans in Mexico and the United States.

These two parameters determine the relative positioning of distributions of wages for Mexican stayers and emigrants and are identified by the extremes of wage distributions, as the no-arbitrage migration equation has to be fulfilled for the least and the most skilled Mexican worker. There exists a close relation between the multiplicative (additive) migration cost and the maximal (minimal) calibrated wage attainable in Mexico (the United States), as summarized in Table C. 2 and depicted in Figure C.1, graphs 8 and 9. However, we do not want to make our calibration strategy vulnerable to and dependent on subjective choices of wage distributions' cut-offs (imposed to keep our model Lipschitz continuous). Therefore, even though we retain the minimal and maximal wages in both countries as targeted empirical moments in the loss function, we assign a relatively low weight to these conditions and do not fit them exactly.

Table C.2: Identification of Model Objects

Object Name	Parameter	Moment	Calibration	Data	Equation
Multiplicative Factors	k_{U}	\hat{c}_{U}^{f}	$4,977.1$	$4,977.5$	(C.I3)
in Production Function	k_{M}	\hat{c}_{M}^{f}	$1,810.5$	$1,810.9$	(C.I4)
Spreads of Mapping between	s_{U}	$\hat{S}_{U M}(0)$	0.1387	0.1387	(C.I6)
Skills and Output	s_{M}	\hat{w}_{M}^{c}	$1,912.4$	799.5	(C.I5)
Spreads of Mapping between	γ_{U}	$\hat{w}_{U}^{\text {share }}$	0.560	0.560	(C.I7)
Productivity and Output	γ_{M}	$\hat{w}_{M}^{\text {share }}$	0.524	0.520	(C.I8)
Utility Costs of Migration	$\Delta_{U M}$	\hat{w}_{M}^{m}	$65,600.8$	42,770	(C.I2)
Monetary Costs of Migration	$\delta_{U M}$	\hat{w}_{U}^{c}	$4,934.3$	$5,760.3$	(C.I1)
Correlation between Skills	θ	$\hat{P}^{(}(\cdot)$	distance: 0.131	(C.I9)	
Distribution of Skills in					
U.S. Resident Population	$F(\cdot)$	$\hat{w}_{U U}(\cdot)$	forced perfect fit	-	

The set of equations (C.I3)-(C.I6) jointly determines the production function parameters in both countries: $k_{U}, s_{U}, k_{M}, s_{M}$, for given values of γ_{U}, γ_{M}. Since these four parameters affect not only country-specific moments (fixed costs and the dispersion of wage distributions) but also influence the location of the separation function, they cannot be individually determined. Equations (C.I3)-(C.I4) indicate that for a given fixed $\operatorname{costs} c_{i}^{f}$ and minimal wages w_{i}^{c}, there exist a combination of k_{i}, s_{i} for $i \in\{U, M\}$ that imposes that the gross surplus produced by the worst match in economy i yields exactly the sum of minimal wage and the fixed

Figure C.1: Identification of Model Parameters
Figure C. 1 shows the results of Monte Carlo calibrations for 9 fitted parameters and respective empirical moments matched (for the mapping between parameters and moments see Table C.2). Horizontal axes represent values of respective parameters, while vertical axes depict differences between observed and model values of matched moments (exceptions are top-left figure, in which we plot the value of loss function, and top-middle figure, in which we plot values of k_{U} parameters). Gray points illustrate outcomes of 800 Monte Carlo calibrations, whereas the black square indicates the best calibration.
production cost (zero profit at the cutoff). Equations (C.I5)-(C.I6) determine the spread of Mexican wage distribution and the total mass of Mexican migrants in the United States, respectively. Note that equation (C.I5) has no counterpart in the U.S. economy. The spread of U.S. residents' wages gives only the range of admissible pairs of k_{U}, s_{U}, not the actual values of these two parameters, because the distribution of wage in the population of U.S. residents is exploited to com-
pute the U.S. skill distribution, $F(\cdot)$, using all degrees of freedom. In this way, one must find another source of identification of k_{U} and s_{U}. In our case, this job is done by the equation that characterizes the mass of Mexican immigrants, which depends on the separation function $\phi(\cdot)$, which in turn relates on production functions in both countries. ${ }^{16}$ Even though Figure C. 1 reveals a close relationship between these four parameters and particular moments, one has to bear in mind that $k_{U}, s_{U}, k_{M}, s_{M}$ are a solution to a system of four simultaneous equation rather than an explicit one-to-one identification.

Equations (C.I7)-(C.I8) determine the ratios of aggregated wage bills to total profits earned by firms in both economies. Therefore, they directly relate to the moments that describe the structure of GDPs discussed in Table C.1. For given parameters k_{i}, s_{i}, these two equations determine the magnitudes of γ_{i} in both countries, as they control the bargaining power of firms in the process of sharing the surplus with workers. ${ }^{17}$

Finally, equation (C.I9) allows us to select the value of copula parameter θ that yields the closest fit to empirically observable conditional probabilities of emigration, $P(\cdot)$, along the distribution of Mexican wages, computed using the MMP data. Our model is over-identified, as long as we fit continuous distributions with parametric approximations. Heckman and Honoré (1990) prove that 3 moments per country wage distribution suffice to fully identify the log-normal self-selection model by Roy (1951).

Solution of the model For a given vector of parameter guesses (denoted by $\Xi)$, the solution algorithm starts with exploiting the distribution of U.S. citizens' wages - the only one that is not affected by the selection mechanism. Using Equation (5), we arrive at the following differential equation:

$$
\begin{equation*}
\frac{\partial w_{U}\left(x_{U}\right)}{\partial x_{U}}=\frac{\partial}{\partial x_{U}} \hat{w}_{U}\left(F\left(x_{U}\right)\right) \leftrightarrow \frac{\partial}{\partial x_{U}} r_{U}\left(x_{U}, h_{U}\left(x_{U}\right)\right)=\hat{w}_{U}^{\prime}\left(F\left(x_{U}\right)\right) F^{\prime}\left(x_{U}\right) \tag{C.1}
\end{equation*}
$$

[^8]where the left hand side function is the derivative of the surplus with respect to its first argument (skill ranking x_{U}), while the right hand side function is the observed inverse distribution of wages $\hat{w}_{U}(\cdot)$ being a function of the distribution of U.S. skills $F(\cdot)$, multiplied by the density of skills supplied by U.S. residents: $F^{\prime}\left(x_{U}\right)$. Equation (C.1) is the first equation in the system of two differential equations, and is solved with an initial condition: $\hat{w}_{U}(1)=w_{U}(1)$. The solution is discretized on the assumed grid, and computed using the Euler method. ${ }^{18}$

The second step is to reveal the underlying selection mechanism induced by a tuple: $\{\Xi, F(\cdot)\}$. We therefore proceed with exhausting the migration condition (18), and taking its first derivative:

$$
\begin{gather*}
\frac{\partial}{\partial x_{U}} \bar{w}_{M}\left(\phi\left(x_{U}\right)\right)=e^{-\Delta_{U M}} \frac{\partial}{\partial x_{U}} \bar{w}_{U}\left(x_{U}\right) \leftrightarrow \\
\frac{\partial}{\partial x_{U}} r_{M}\left(\phi\left(x_{U}\right), h_{M}\left(\phi\left(x_{U}\right)\right)\right) \phi\left(x_{U}\right)^{\prime}=\frac{P_{M}}{P_{U}} e^{-\Delta_{U M}} \frac{\partial}{\partial x_{U}} r_{U}\left(x_{U}, h_{U}\left(x_{U}\right)\right) . \tag{C.2}
\end{gather*}
$$

The latter serves as the second equation in the two-dimensional system, solved simultaneously with Equation (C.1), using the Euler method on the assumed grid, and taking the initial condition: $\phi(1)=1 .{ }^{19}$ For the given solution for selection pattern, determined by the separation function $\phi(\cdot)$, the mass of Mexican immigrants in the United States can be computed by using Equation (19), discretized in the following way:

$$
\begin{equation*}
S_{U M}\left(x_{U}-d x_{U}\right)=S_{U M}\left(x_{U}\right)+d x_{U} \partial C\left(x_{U}, \phi\left(x_{U}\right)\right) / \partial x_{U} \tag{C.3}
\end{equation*}
$$

for all skills x_{U} ranging from 1 down to $x_{U M}^{c}$, with step $d x_{U}=1 / K$. The starting point requires that: $S_{U M}(1)=0$.

At this stage, we can use the Euler discretization of country-specific Equations (5) to determine the wage distributions of Mexican workers in the United States and in Mexico. The final result of the calibration for a given guess of parameter values Ξ is a set of three wage distributions: U.S. residents, $w_{U} \equiv\left(w_{U}\left(x_{U}\right), F\left(x_{U}\right)\right)$, Mexican immigrants in the United States, $w_{U M} \equiv\left(w_{U}\left(x_{U}\right), F_{U M}\left(x_{U}\right)\right)$, and Mex-

[^9]ican stayers, $w_{M} \equiv\left(w_{M}\left(x_{M}\right), F_{M}\left(x_{M}\right)\right) .{ }^{20}$

Calibration algorithm Our goal in the calibration procedure is to find such a vector of parameters Ξ that gives the best possible fit of $w_{U}, w_{U M}$ and w_{M} to the observed distributions $\hat{w}_{U}, \hat{w}_{U M}$ and \hat{w}_{M}, along with fitting crucial moments in the data. The solution of the model requires finding functions and distributions, for which there exists no analytical solution, therefore to calibrate the model we cannot escape solving it for each guess of parameters Ξ.

The calibration procedure assumes a search through a $\operatorname{dim} \Xi=9$ dimensional space of parameters, and each vector requires a full solution of the model on the defined grid. To maximize the performance of such a computationally-intensive search, we propose a version of a basing-hopping algorithm, enriched with a Monte Carlo search procedure, with a given goal function. ${ }^{21}$ Our implementation of the random search through the parameter space is in principle a variant of the Simulated Annealing Optimization method.

Each vector Ξ is evaluated using a subjective goal function: ${ }^{22}$

$$
\begin{align*}
\zeta(\Xi) & =p_{1}\left|c_{U}^{f}-\hat{c}_{U}^{f}\right|+p_{2}\left|c_{M}^{f}-\hat{c}_{M}^{f}\right|+p_{3}\left|w_{M}^{\min }-\hat{w}_{M}^{\min }\right|+p_{4}\left|w_{M}^{\max }-\hat{w}_{M}^{\max }\right| \\
& +p_{5}\left|w_{U M}^{\text {min }}-\hat{w}_{U M}^{\text {min }}\right|+p_{6}\left|w_{U}^{\text {share }}-\hat{w}_{U}^{\text {sare }}\right|+p_{7}\left|w_{M}^{\text {share }}-\hat{w}_{M}^{\text {share }}\right| \tag{C.4}\\
& +p_{8} e(P-\hat{P})+p_{9}\left|S_{U M}(0)-\hat{S}_{U M}(0)\right| \\
& +p_{10} e\left(w_{U}\right)+p_{11} e\left(w_{U M}\right)+p_{12} e\left(w_{M}\right),
\end{align*}
$$

where $e(\cdot)$ is an error function that computes the squared difference between an object from the model and its empirical counterparty in the data, and p 's are subjective weights. ${ }^{23}$ The $P(\cdot)$ function computes the conditional probabilities of emigration from Mexico (see Equation C.I9), while functions $w_{i}(\cdot)$ represent the

[^10]group-specific distributions of wages. The goal function aims at minimizing: (i) the distance between eight model variables and corresponding moments in the data (multiplied by weights: p_{1}, \ldots, p_{8}) ; (ii) the absolute difference between the number of Mexican migrants in the United States from the model and from the data (weighted by p_{9}) and the distances between model and data wage distributions in three populations (weighted by p_{10}, \ldots, p_{12}).

The proposed Monte Carlo search method assumes the following procedure:

1. Select a randomly drawn guess of parameters Ξ_{0}.
2. If $\zeta\left(\Xi_{0}\right)<$ threshold continue; else go to step 1.
3. Search for a new vector of parameters in a close neighborhood of the current vector of parameters: $\Xi_{1}: e\left(\Xi_{0}, \Xi_{1}\right)<\epsilon\left(\zeta\left(\Xi_{0}\right)\right)$, where the imposed distance is a function of the current "goodness of fit" of the model.
4. If $\zeta\left(\Xi_{1}\right)<\zeta\left(\Xi_{0}\right)$ then $\Xi_{0} \leftarrow \Xi_{1}$ and go to step 3.
5. If no better vector Ξ_{1} found after a given number of replications, return the best fitting vector Ξ_{0} and go to step 1 .

The algorithm settled on the vector of parameters indicated in Table C.3. For a graphical analysis of the loss function minimum achieved by the best parameter vector consult Figure C.2, where we disturb the best vector of parameters (deviation of which is normalized to zero in the figures) with small positive and negative deviations. Location $\left(k_{i}\right)$ and spread $\left(s_{i}\right)$ of the skill-component in the U.S.-based surplus function take higher values than their counterparts in Mexico. The former is driven by a significant first-order stochastic dominance of the wage distribution of Mexican emmigrants relative to Mexican stayers, while the latter indicates a higher dispersion in skills pricing on the American market comparing to Mexico. Then, firms' component in surplus appears to be almost identical in the United States and in Mexico. Interestingly enough, our best calibration returns a rather low value of the copula parameter θ. Its value close to 1 indicates that U.S. and Mexican skills are weakly related with an average rank correlation of 0.33 . Migration costs take values in expected ranges: the multiplicative one equals $1-\Delta_{U M}=68 \%$ of migrant's wage in the United States, while the additive one is $\delta_{U M}=338$ USD. Trade costs, reported in Table C.4, take values ranging between 1 and 2.1, they are solely determined by the bilateral trade matrix for a given combination of price indexes, aggregated productions and the elasticity of substitution between product varieties.

Figure C.2: Evaluation of the Best Parameter Vector
Figure C. 2 presents the values of loss function $\zeta(\Xi)$, Eq. (C.4) in the neighborhood of the best parameter vector. Four panels represent one-dimensional marginal values with respect to 9 calibrated parameters: $k_{U}, k_{M}, s_{U}, s_{M}, \gamma_{U}, \gamma_{M}, \Delta_{M U}, \delta_{M U}, \theta$. Horizontal axes represent deviations in the value of respective parameters (calibrated value normalized to 0), while vertical axes depict values of loss function (minimized value normalized to 1).

Table C.3: Calibrated values of parameters

US Market	MEX Market	Migration Parameters
$k_{U}=12,457.9$	$k_{M}=7,529.1$	$\theta=0.990$
$s_{U}=0.849$	$s_{M}=0.462$	$\delta_{U M}=338.2$
$\gamma_{U}=0.354$	$\gamma_{M}=0.356$	$\Delta_{U M}=0.319$

Table C.4: Calibrated trade costs

To: \backslash From:	ROW	MEX	US
ROW	1.00	1.82	1.14
MEX	1.96	1.00	1.39
US	1.99	2.09	1.00

Backward Recalibration Our calibration strategy considers a single, crosssectional snapshot of U.S. and Mexican economies, by fitting nine model parameters to eight discrete moments and a set of conditional probabilities of emigration. This might raise concerns that (i) the calibrated parameters are unstable over time and (ii) that there is no natural external validation of our calibration. To dispel these worries, we investigate the fit of our 2015 model to 2010 data on labor markets, wages and migration. First, we argue that parameters that represent production technology and prices for skills ($s_{U}, s_{M}, \gamma_{U}, \gamma_{M}$) are held constant throughout the course of five years. This assumption is motivated by the fact that the standard deviations of wage distributions are almost identical across the two waves, so as the share of firms' profits in GDP. Second, we recalibrate the model using only five model parameters $\left(k_{U}, k_{M}, \delta_{U M}, \Delta_{U M}, \theta\right)$, and show that we are able to fit the 2010 data with a reduced set of parameters. The outcomes of the calibration are depicted in Figure C.3.

Figure C.3: Model Fit to 2010 data

We observe only slight changes in the values of recalibrated parameters. The multiplicative constant in production function represents total factor productivities in both countries, changes by -11% in the United States and remains roughly identical in Mexico. The utility costs of migration are lower in 2010 by 4 percent-
age point (of the wage lost when migrating), while monetary costs of migration are larger by approximately 100 USD in 2010. Recall that the Deferred Action for Childhood Arrivals (DACA) legislation was already active in 2015, but not present in 2010, which might explain these differences. Finally, the copula parameter equals 1.2 in 2010, which implies a small increase in the skill correlation among Mexicans by 4 percentage points.

Simulation algorithm In counterfactual simulations we manipulate the values of additive (and multiplicative) migration costs. We solve for the new equilibrium, keeping the set of parameters: $\left\{k_{i}, \gamma_{i}, s_{i}\right\}$ for $i \in\{U, M\}$ and θ constant. $\delta_{U M}$ (and $\Delta_{U M}$) change, while the remaining variables and functions in the model become endogenous.

The algorithm solves for the new equilibrium following a sequential computation procedure. Taking a first guess on the total number of Mexican migrants to the US, $S_{U M}(0)$, it recomputes the skill and wage distributions, for the new migration costs. Then, separately for each economy, the procedure computes the mass of firms by setting expected profits equl to the fixed costs of entry. These steps allow to obtain country-specific labor market equilibria. Finally, the trade matrix is updated, price indexes are recomputed and new guess on the counterfactual number of Mexicans in the United States can be produced. This iterative procedure is continued as long as the aggregated deviation in all endogenous variables in consecutive steps is smaller than $1 / K$. In Figure C.4, we present deviations in values of GDPs after recomputing the labor market equilibrium for (non-)equilibrium initial values of GDPs. Only one point (the actual equilibrium) is mapped on itself; other starting points map to different points with positive distance from the initial ones. This indicates that the two-market general equilibrium necessarily has a unique solution (in a fairly large neighborhood of the initial equilibrium) which can be computed using an iterative procedure (first solve labor market, than solve international goods market, repeat until convergence).

D Additional Results

We verify the robustness of our main results by performing several additional simulations, including alternative parameter values (for the market size effect and the structure of costs), and functional forms of the distribution of inactive individuals.

Figure C.4: Uniqueness of Model's General Equilibrium
Figure C. 4 illustrates the numerical proof of uniqueness of the model's general equilibrium. The "xx" ("yy") axis represents initial deviations in Mexican (U.S.) GDP, while the vertical axis depict logarithms of Euclidean distances between initial and computed vectors of GDPs. General equilibrium GDP levels are normalized to 1 .

Fiscal Effects Mexican migrants in the United States tend to locate in the left tail of wage distributions, consequently they are expected to have a net fiscal contribution different from the one of U.S. or Mexican residents. To quantify the extent to which the U.S. and Mexican fiscal balances change due to Mexican immigration, we add to our model the fiscal extension. ${ }^{24}$ Double-dashed black lines in Figure D.1a illustrate that due to Mexican immigration, U.S. residents are forced to pay 94 USD of the budget-balancing lump-sum tax, while Mexican stayers benefit from a 46 USD lump-sum transfer (note that the solid light gray lines recall the benchmark results from Figure 3). Despite being quantitatively small, the change in net benefits received by incumbent residents sets the share of winners and losers to approximately 40:60 in the United States and 60:40 in Mexico.

[^11]Illegal Mexican Immigration Illegal migration from Mexico to the United States proves to be one of the key points in the overall discussion about American migration policy. To analyze its economic importance, we include estimates of the number of undocumented Mexicans and their wage distribution in our quantifications. ${ }^{25}$ The quantitative outcomes of including illegal Mexican immigrants in the no-migration scenario are depicted in Figure D.1a with long-dashed gray lines. The magnitudes of the economic impacts become significantly more pronounced (especially for the low-skilled U.S. residents), while the measures of losers and winners stay virtually unchanged.

Alternative distributions of inactive individuals' skills Any shock to the supply of skills in the United States affects workers' participation. More precisely, the presence of Mexicans discourages some previously employed Americans to quit the labor market. Importantly, we do not observe the wages (nor the skills) of these inactive individuals; thus, we can only speculate about the distribution of their skills. In the benchmark, we assume that the skills of out-of-the-market individuals are distributed uniformly. In what follows, we verify this by taking exponential (strictly convex) and logarithmic (strictly concave) CDFs. Both have a negligible impact on the wage effect, as depicted in Figure D.1b.

Modifying the market size effect The literature provides numerous estimates of the elasticity of trade flows with respect to trade costs (equivalent to the elasticity of substitution between varieties, ε, in our model). The various model specifications and datasets used, however, allow us to formulate a convergent view on the magnitude of this particular variable. In the Melitz (2003) trade model with heterogeneous firms, Simonovska and Waugh (2014b) indicate that the 80% confidence interval is [4.1,6.2]. Melitz and Redding (2015) use $\varepsilon=4$ in their simulations. In the framework developed by Eaton and Kortum (2002), this elasticity is found to be in the range of $[3.8,5.2]$ according to Bernard et al. (2003); Donaldson (2018); Burstein and Vogel (2010); Eaton et al. (2011); Parro (2013); Simonovska and Waugh (2014a); Caliendo and Parro (2015), although Eaton and

[^12]

Figure D.1: Robustness Checks

Note: Figure D. 1 illustrates the economic effects of Mexican migration to the United States, with alternative assumptions about the structure of the model. Figure D.1a includes illegal immigrants (gray dashed line) and fiscal effects (black double-dashed line). Figure D.1b experiments with the distribution of skills of inactive workers. The reference scenario (solid gray) assumes a linear CDF, the "convex scenario" (long-dashed dark gray) assumes exponential CDF, while the "concave scenario" (double-dashed black) assumes logarithmic CDF. Figure D.1b assumes alternative values for the elasticity of substitution between varieties (solid gray benchmark: $\varepsilon=7$, double-dashed black: $\varepsilon=5$, long-dashed dark gray: $\varepsilon=9$). Figure D.1c assumes alternative structure of capital and investment costs (solid gray benchmark: fixed costs constitute 35% of capital costs, double-dashed black: 0%, long-dashed gray: 100\%).

Kortum (2002) estimate it at the level of 8. Therefore, we verify the consequences of alternative estimates of ε for our main results. Figure D.1c summarizes the main results assuming different magnitudes of the market size effect. The solid gray line indicates the reference value of $\varepsilon=7$; with the dark-gray line, we assume $\varepsilon=9$; and the black line imposes $\varepsilon=5$. Higher elasticities (lower market size effects) move the welfare effects very slightly downward. A stronger market size effect has a significantly positive impact on the gains from inviting immigrants, which increases the mass of winners to 100%.

Changing the structure of capital costs One degree of freedom in the calibration process is subject to a broad interpretation of the underlying data. This problem concerns the division between variable and fixed costs of capital, that are necessary to pin down production costs. In the benchmark calibration, we assume that the consumption of fixed capital that relates to structures constitutes the fixed part of capital costs, while equipment and intellectual property costs are ascribed to its variable part. In this robustness check, depicted in Figure D.1d, we verify the results of our migration scenario in two extreme cases of 100% of capital consumption being related to the fixed (variable) costs of production, illustrated by the dark-gray (black) line. Higher fixed share of capital costs twists the gain distribution clockwise, while higher variable share of costs inflates the magnitudes of extreme effects, but keeps the indifferent individual at around $40^{\text {th }}$ percentile, close to our benchmark result.

Applying redistribution among U.S. citizens Below, we complement the findings of Section 5.2 by deriving the tax rates imposed on all U.S. citizens that finance a lump-sum transfers designed to keep the variance of U.S. citizens wage distribution constant between the reference and the counterfactual scenarios. Note that this redistribution policy does not affect average wages among U.S. citizens. Figure D. 2 depicts the outcomes with the long-dashed gray (solid black) line indicating the case of labor market effects (labor market and market size effects). The induced tax rates are almost linear in migration cost liberalizations. In order to maintain the variance of U.S. citizens wage distributions constant, every 100 USD reduction of visa costs should be followed by an increase in proportional income taxes by 0.027 percentage points. The respective number for the full general equilibrium model is 0.02 .

Figure D.2: Redistribution Among U.S. Citizens: Variance-Preserving Tax Rates
Note: Figure D. 2 plots the tax rates that compensate for the change in wage inequality generated by more liberal Mexico-US immigration policies. The long-dashed gray line (the solid black line) represents labor market effects (labor and market size effects). Horizontal axes present deviations in monetary costs of migration, $\delta_{U M}$, relative to the status quo

E Canonical CES model

Reference to the canonical model of labor market and multiple-bins $\boldsymbol{C E S}$ model In the introduction we have explained that the standard way of modeling the labor market in the migration literature involves the use of a constant elasticity of substitution (CES) production function, and that this method of modeling the labor market allows for endogenous migration choices only under the (restrictive) assumption that skills are perfectly correlated across countries. ${ }^{26}$ In this section, we perform a comparison of labor market effects generated by our model with two fundamental state-of-the-art models of labor markets: the "the canonical CES model" of labor markets by Acemoglu and Autor (2011) and the "multiple-bins CES model" by Dustmann et al. (2013). Before discussing our results, let us first sketch the two theories to which we relate.

The labor market analyzed by Acemoglu and Autor (2011) is a k-skill extension of the standard two-skill CES model, in which the number of efficiency units of skill k among workers from origin o is continuously distributed according to an exogenously given distribution \mathcal{L}_{k}^{o}. The aggregated production function can be expressed as a nested CES function (with the first tear referring to education, and

[^13]the second to origin):
\[

$$
\begin{equation*}
Y=\left[\sum_{k \in \mathcal{K}} \alpha_{k} L_{k}^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}, \quad L_{k}=\left[\alpha_{k}^{N}\left(L_{k}^{N}\right)^{\frac{\sigma_{m}-1}{\sigma_{m}}}+\alpha_{k}^{M}\left(L_{k}^{M}\right)^{\frac{\sigma_{m}-1}{\sigma_{m}}}\right]^{\frac{\sigma_{m}}{\sigma_{m}-1}} . \tag{E.1}
\end{equation*}
$$

\]

The total number of efficiency units supplied by a particular skill-origin cell equals $L_{k}^{o}=\int l \mathrm{~d} \mathcal{L}_{k}^{o}(l)$, while σ and σ_{m} stand for constant elasticities of substitution between inputs of different sort of skill/origin, respectively. The wage rate of any individual $i \in \mathcal{L}_{k}^{o}$ equals: $w_{i}=w_{k}^{o} l_{i}$, where w_{k}^{o} is the remuneration of a unit of skill k supplied by members of the origin group $o \in\{N, M\}$. Knowing the distribution of the efficiency units supplied, it is straightforward to compute the distribution of wage effects in the population of U.S. workers generated by removing all Mexicans workers from the U.S. economy. The downside of this approach consists in keeping the distributions of efficiency units constant. Therefore, the overall economic effects of migration can be computed as a linear combination of direct effects on k discrete groups weighted by exogenously given distribution of k types of efficiency units along the distribution of wages.

In the model developed in Dustmann et al. (2013) the production process takes place using labor and capital (as we consider only the long-term effects, we assume capital fully adjusts). Individuals are categorized into K groups according to their location in the wage distribution (migrants and natives being perfect substitutes within the so-defined skill group). We define:

$$
\begin{equation*}
Y=\left(\beta H^{\frac{s-1}{s}}+(1-\beta) C^{\frac{s-1}{s}}\right)^{\frac{s}{s-1}}, \quad H=\left(\sum_{K \in \mathcal{K}} \alpha_{K}\left(l_{K}\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} . \tag{E.2}
\end{equation*}
$$

Assume that the size of group K equals the sum of native U.S. workers and immigrants Mexican workers that earn the same wage rate: $l_{K}=l_{K}^{N}+l_{K}^{M}$. While the allocation of workers in Acemoglu and Autor (2011) was done according to their observable characteristics (i.e. education level), in Dustmann et al. (2013) workers are classified into discrete groups according to their location in the observed wage distribution. In this way, the wage effects induced by immigrants are, as summarized by Dustmann et al. (2013), dependent upon their relative density along the distribution of wages.

Figure E. 1 compares the economic effects for U.S. citizens of exogenous removals of different cohorts of Mexican migrants from the U.S. labor market. Black lines relate to the labor market effects generated by our model, the red lines depict the wage effects produced by a $\mathcal{K}=4$ group CES model in the vein of Acemoglu
and Autor (2011), whereas the blue lines present the wage effects assuming the CES model by Dustmann et al. (2013) with $\mathcal{K}=100$ groups of workers. ${ }^{27}$ Our results resemble the outcomes from Acemoglu and Autor (2011) model as long as the imposed migration shock does not create too big of a composition effect, and the similarity is closest if only the size effect is present. This means that the changes in migration that our model produces (endogenously) in reaction to changes in migration cost $\delta_{U M}$ would create similar labor market effects in the Acemoglu and Autor (2011) model. Thus, remarkably, our framework allows for an endogenization of migration choices under realistic assumptions about skill interdependence, while also producing labor market effects consistent with those produced by the canonical model of the labor market. However, if the composition effect is strong (for example, if we remove 1% and 10% of top skilled Mexicans), the labor market effects implied by these two models diverge, because in that case the model by Acemoglu and Autor (2011) predicts almost no redistribution across workers: The exogenous weights on the distributions of efficient skills make the heterogeneous effects on 4 discrete skill groups cancel out along the distribution, which is visible in the second row of figures in its extreme case. Thus, wage-constrained visa policies (Section 5.3) could produce very different distributive effects in our model and in the Acemoglu and Autor (2011) model.

The percentile-bins CES model by Dustmann et al. (2013) produces size effects similar to those in our model, but drastically different composition effects. The reason is that the percentile-bins CES model generates positive wage effects for the group which is hit by the negative supply shock, and uniform and negative effects for all other quantiles of wage distribution (as all percentiles are identically substitutable in the production function). The magnitudes of these effects are also significantly higher (as measured on the right-hand-side axes). Thus, the changes produced by our model in reaction to changes in migration cost $\delta_{U M}$ would likely produce noticeably different labor market effects in the percentile-bins CES model.

Having considered these results, it is vital to highlight fundamental differences between the assignment and CES models. First, the assignment model exhibits distance-dependent elasticity of substitution (DIDES), as in Teulings (1995, 2005); Costrell and Loury (2004), that is, workers with similar skills are more likely to be substitutes than workers with very different skills. Second, the elasticity of substitution is endogenous along the wage distribution and depends on the whole

[^14]distributions of skills supplied and firms' productivities. This property is in sharp contrast with classical CES models, which assume a constant elasticity of substitution, in which case the structure of labor market interactions is fixed along the distribution of wages as in Acemoglu and Autor (2011) or is symmetric across wage quantiles as in Dustmann et al. (2013). Second, as workers are preassigned to discrete groups in the CES model in which they are perfect substitutes (classification being done according to their education level or their placement in wage distribution in the baseline), there is no room for heterogeneous effects of migration within these broadly defined groups. Moreover, a skill-specific migration shock cannot induce workers' mobility along the wage distribution, which is the main constraint of the multiple-bins CES model articulated by Dustmann et al. (2013). In contrast, our model allows for rematching between incumbent workers and firms after any shock to the supply of labor. This, in turn, induces heterogeneous welfare effects along the distribution of wages. Our approach explicitly accounts for natives' mobility along the distribution of wages induced by an inflow/outflow of migrants, similar to the mechanism discussed by Peri and Sparber (2009) and Foged and Peri (2016).

Figure E.1: Labor Market Effects in the Matching and CES models
Figure E. 1 presents the quantifications of labor market effects for U.S. residents from exogenous immigration shocks generated by: the selection and matching model of this paper (black solid curves), the canonical model of labor markets by Acemoglu and Autor (2011) (red long-dashed line) and the multi-bins CES model by Dustmann et al. (2013) (blue two-dashed line). The magnitude of the effects generated by the last model are summarized in the right-hand-side axes. The first (second) row of figures assumes removing $1 \%, 10 \%$ and 50% of the lowest (highest) earning Mexican immigrants in the United States, while the third row depicts the outcomes of a random deletion of $5 \%, 51 \%$ and 100% of Mexican migrants in the United States. All effects are depicted as outcomes of removing Mexican immigrants from the U.S. economy, expressed in percentage points, with horizontal axes represent quantiles of U.S. residents wage distribution.

References

Acemoglu, D. and Autor, D. (2011). Skills, Tasks and Technologies: Implications for Employment and Earnings. In Handbook of Labor Economics, volume 4, pages 1043-1171. Elsevier.
Athey, S. (2002). Monotone Comparative Statics under Uncertainty. The Quarterly Journal of Economics, 117(1):187-223.
Berge, C. (1963). Topological Spaces. Macmillan.
Bernard, A. B., Eaton, J., Jensen, J. B., and Kortum, S. (2003). Plants and Productivity in International Trade. American Economic Review, 93(4):12681290.

Burstein, A. and Vogel, J. (2010). Globalization, Technology, and the Skill Premium: A Quantitative Analysis.
Caliendo, L. and Parro, F. (2015). Estimates of the Trade and Welfare Effects of NAFTA. The Review of Economic Studies, 82(1):1-44.
Caponi, V. and Plesca, M. (2014). Empirical Characteristics of Legal and Illegal Immigrants in the USA. Journal of Population Economics, 27(4):923-960.
Costrell, R. M. and Loury, G. C. (2004). Distribution of Ability and Earnings in a Hierarchical Job Assignment Model. Journal of Political Economy, 112(6):13221363.

Donaldson, D. (2018). Railroads of the Raj: Estimating the Impact of Transportation Infrastructure. American Economic Review, 108(4-5):899-934.
Dupuy, A., Galichon, A., Jaffe, S., and Kominers, S. D. (2017). Taxation in Matching Markets. SSRN Electronic Journal.
Dustmann, C., Frattini, T., and Preston, I. P. (2013). The Effect of Immigration Along the Distribution of Wages. Review of Economic Studies, 80(1):145-173.
Eaton, J. and Kortum, S. (2002). Technology, Geography, and Trade. Econometrica, 70(5):1741-1779.
Eaton, J., Kortum, S., and Kramarz, F. (2011). An Anatomy of International Trade: Evidence from French Firms. Econometrica, 79(5):1453-1498.
Foged, M. and Peri, G. (2016). Immigrants' Effect on Native Workers: New Analysis on Longitudinal Data. American Economic Journal: Applied Economics, 8(2):1-34.
Gola, P. (2019). Supply and Demand in a Two-Sector Matching Model.
Heckman, J. J. and Honoré, B. E. (1990). The Empirical Content of the Roy Model. Econometrica, 58(5):1121.
Massey, D. S. and Gentsch, K. (2014). Undocumented Migration and the Wages of Mexican Immigrants. The International Migration Review, 48(2):482-499.
Melitz, M. (2003). The Impact of Trade on Aggregate Industry Productivity and Intra-Industry Reallocations. Econometrica, 71(6):1695-1725.
Melitz, M. J. and Redding, S. J. (2015). New Trade Models, New Welfare Implications. American Economic Review, 105(3):1105-46.
Milgrom, P. and Segal, I. (2002). Envelope Theorems for Arbitrary Choice Sets. Econometrica.
Parro, F. (2013). Capital-Skill Complementarity and the Skill Premium in a Quantitative Model of Trade. American Economic Journal: Macroeconomics, 5(2):72-117.
Peri, G. and Sparber, C. (2009). Task Specialization, Immigration, and Wages. American Economic Journal: Applied Economics, 1(3):135-169.
Roy, A. D. (1951). Some Thoughts on the Distribution of Earnings. Oxford Economic Papers, 3(2):135-146.
Simonovska, I. and Waugh, M. E. (2014a). The Elasticity of Trade: Estimates and Evidence. Journal of International Economics, 92(1):34-50.
Simonovska, I. and Waugh, M. E. (2014b). Trade Models, Trade Elasticities, and the Gains from Trade.
Tarski, A. (1955). A Lattice-Theoretical Fixpoint Theorem and its Applications.

Pacific Journal of Mathematics.
Teulings, C. N. (1995). The Wage Distribution in a Model of the Assignment of Skills to Jobs. Journal of Political Economy, 103(2):280-315.
Teulings, C. N. (2005). Comparative Advantage, Relative Wages, and the Accumulation of Human Capital. Journal of Political Economy, 113(2):425-461.

[^0]: *Contact: Michał Burzyński: michal.burzynski@liser.lu; Paweł Gola: pawel.gola@bi.no.

[^1]: ${ }^{1}$ This follows directly from profit maximization, as

 $$
 \begin{aligned}
 \pi\left(m\left(x ; \rho_{2}\right) ; \rho_{1}\right) & \geq r\left(x, m\left(x ; \rho_{2}\right)\right)-w\left(x ; \rho_{1}\right) \geq(>) r\left(x, m\left(x ; \rho_{2}\right)\right)-w\left(x ; \rho_{2}\right) \\
 & =\pi\left(m\left(x ; \rho_{2}\right) ; \rho_{2}\right) .
 \end{aligned}
 $$

[^2]: ${ }^{2}$ Lemma 2 extends Proposition 7 in Costrell and Loury (2004) to a setting with unemployment. Lemma 3 is closely related to Theorem 3 in Athey (2002).

[^3]: ${ }^{3}$ Condition (1) follows from Equations (18)-(21) and market clearing. Condition (2) follows from differentiating Equation (18) on $\left(x_{M}^{c}, x_{M}^{S}\right)$ and noting that wages must be non-decreasing in equilibrium; (3) follows from Equations (19) and (20); and (4), obviously, from Equation (21). Note that R_{i}^{W} denotes the measure of workers born in country i, with R_{M}^{W} normalized to 1 .
 ${ }^{4}$ Here, and in the remainder of this proof, by \neq we mean the negation of "equal almost everywhere".
 ${ }^{5} \mathrm{Or}$ some selection from the set of such functions, for cases when $S_{i}(0)=0$ for some $i \in$ $\{U, M\}$.

[^4]: ${ }^{7}$ Note that interior solutions exist only if $\left(R_{M}^{F}, R_{U}^{F}\right) \in \mathbf{R}_{>\mathbf{0}}^{2}$.
 ${ }^{8}$ Consider a family of separation functions, such that $\psi\left(x_{M} ; t_{M}\right)=\psi^{*}\left(x_{M}\right)+\left(x_{M}-x_{M}^{c *}\right)^{2}\left(x_{M}-\right.$ $\left.x_{M}^{s *}\right)^{2}\left(\left(t_{M}-1\right) \underline{\epsilon}+t_{M} \bar{\epsilon}\right)$ for $x_{M} \in\left(x_{M}^{c *}, x_{M}^{s *}\right)$, and $\psi\left(x_{M} ; t_{M}\right)=\psi^{*}\left(x_{M}\right)$ otherwise. As long as $\epsilon, \bar{\epsilon}$ are small enough, each $\psi\left(\cdot ; t_{M}\right)$ is strictly increasing and thus gives raise to a supply function

[^5]: ${ }^{10}$ It follows from Berge's (1963) maximum theorem that the correspondence $\mathbf{S}\left(t_{R}\right) \equiv$ $\arg \max _{\left(S_{U U}, S_{M M}\right) \in \mathbb{A}} V^{I}\left(\left(S_{U U}, S_{M M}, t_{R}\right)\right.$ is upper-hemicontinuous. However, as this correspondence is singleton valued, this implies that it is continuous.
 ${ }^{11}$ This is because the equilibrium wage function that holds in the non-degenerate country (U.S.) is trivially continuous in R_{M}^{F}, and the U.S. wage function determines the lowest wage function in Mexico that prevents any worker from remaining in that country. A similar reasoning holds even if both countries are degenerate.

[^6]: ${ }^{12}$ Multiplying voth sides of (A.19) by $P_{i}^{\varepsilon-1} Y_{i}$, summing by i and rearranging results in

 $$
 \mathscr{F}(\mathbf{P})\left[1+\frac{a Y_{U}}{a \mathscr{F}(\mathbf{P})+\sum_{k} Y_{k} \tau_{k U}^{1-\varepsilon} P_{k}^{\varepsilon-1}}+\frac{a Y_{M}}{a \mathscr{F}(\mathbf{P})+\sum_{k} Y_{k} \tau_{k M}^{1-\varepsilon} P_{k}^{\varepsilon-1}}\right]=0
 $$

 which implies that $\mathscr{F}(\mathbf{P})=0$.

[^7]: ${ }^{13}$ To see that \mathscr{T}_{i} always maps into I_{i}, first note that it is increasing in P for all $P \geq 0$, and that $\mathscr{T}(0,0,0)$ is equal to the lower bound of I_{i}. Secondly, $Y_{i}\left(a \mathscr{F}(\mathbf{P})+\sum_{k \in\{U, M, W\}} \frac{Y_{k} \tau_{i k}^{1-\varepsilon}}{P_{k}^{1-\varepsilon}}\right)^{-1}$ is always positive, implying that $\mathscr{T}_{i}(\mathbf{P}) \leq \tau^{W i} p_{W}$.
 ${ }^{14}$ Trivially for $i=W$. For $i \in\{U, M\}$ we have $\mathscr{K}_{i}(\mathbf{Y}) \leq\left[\bar{Q}_{i} \mathscr{B}_{i}(\mathbf{1})\right]^{\frac{1}{\varepsilon}} \lambda^{\frac{1}{\varepsilon}} \leq \lambda$.
 ${ }^{15} \mathscr{K}$ is continuous by the same reasoning as that in footnote 10 .

[^8]: ${ }^{16}$ This module is close to what has been discussed regarding identification of the self-selection model by Roy (1951) in the paper by Heckman and Honoré (1990). Parameters k_{i} relate to the location of the wage distributions, as they are identified by the fixed costs, c_{i}^{f}. Then, parameters s_{i} determine the dispersion of wage distributions, while migration costs determine the skewness of the two wage distributions, as in all self-selection models.
 ${ }^{17}$ This part of the identification strategy significantly differs from a standard self-selection model of Roy (1951), as in the latter there are no firms (or equivalently: all firms are homogeneous), which corresponds to a situation in which $\gamma_{i} \rightarrow \infty$. It is instructive to say that positive values of γ_{i} are the artifacts of our model that differentiate our approach from the classical self-selection model, and bring us closer to better understanding the importance of matching in real world labor markets.

[^9]: ${ }^{18}$ Euler method is the simplest numerical way to solve an ordinary differential equation (ODE) with a given initial condition. For a given ODE: $y^{\prime}(x)=f(x), y(1)=f(1)$, and a given series of grid points: $\{x(1), \ldots, x(K)\}$, one computes the values of y by setting: $y(x(t))=y(x(t-1))+$ $(x(t)-x(t-1)) f(x(t-1))$.
 ${ }^{19}$ Our model approximates the model with unbounded, log-normally distributed skills, in which $\phi(1)=1$ (this means that $\forall x_{U} \leq 1 \exists x_{M}:\left(x_{U}, x_{M}\right)$ stays in Mexico). Thus, setting $\phi(1)=1$ amounts to imposing a condition that, in this dimension at least, we consider only specifications that retain this important feature of the model with (untruncated) log-normal skills.

[^10]: ${ }^{20}$ The proposed notation includes skill CDFs in the analyzed groups of workers. $F_{U M}\left(x_{U}\right)=$ $\left(S_{U M}\left(x_{U M}^{c}\right)-S_{U M}\left(x_{U}\right)\right) / S_{U M}\left(x_{U M}^{c}\right)$, while: $F_{M}\left(x_{M}\right)=\left(S_{M}\left(x_{M}^{c}\right)-S_{M}\left(x_{M}\right)\right) / S_{M}\left(x_{M}^{c}\right)$.
 ${ }^{21}$ Standard, one-dimensional selection models can be calibrated using a Maximum Likelihood Estimation (MLE). In the case of our model this is not feasible because the selection patterns cannot be solved for analytically. This means that we are unable to obtain closed form solutions for the distributions of wages, which makes it impossible to use a standard MLE algorithm. Instead, we set the model parameters to match the full distributions of the three groups of workers that we observe. This method is computationally less demanding, but arrives at a similar outcome: a MLE of Ξ would aim at equalizing the model distribution of wages to the observed ones, so that the probability of selecting an individual from a given wage distribution (that is an ordered pair of wage rate and ranking) is maximized.
 ${ }^{22} p_{1}=p_{2}=100, p_{3}=p_{4}=p_{5}=1, p_{6}=p_{7}=5 \cdot 10^{5}, p_{8}=10^{4}, p_{9}=4 \cdot 10^{5}, p_{10}=50, p_{11}=$ $3, p_{12}=2$.
 ${ }^{23}$ For $P(\cdot)$ the function $e(\cdot)$ returns the Euclidean distance between model vector of probabilities and data. For distributions, for every grid point we compute Euclidean distances between quantiles of data and model distributions.

[^11]: ${ }^{24}$ Specifically, we calculate how much the budget deficit in country i would change in response to Mexican immigration, and then redistribute this difference across all workers in country i. This is an out-of-equilibrium exercise, since in our model Mexican workers only take gross wages into account when making their migration decision, but it nevertheless provides an indication about the order of magnitudes. Regarding the data, we collect income and corporate tax rates and thresholds for the United States and Mexico from the OECD. Finally, we assume balanced governmental budgets, and choose that the lump-sum transfers adjust after shocking the economy.

[^12]: ${ }^{25}$ We take the number of undocumented Mexicans from the Pew Research Center. The authors calculate that out of 11.7 million Mexican immigrants in the United States in 2014, there were approximately 5.8 million illegals. Our data consider 7 million working-age migrants (according to the crude estimates, one-third/one-fourth of illegals are included in the U.S. Census); thus, in this simulation we increase the number of Mexicans in the US to 10.5 million. Illegal migrants earn substantially lower wages than their legal peers. Caponi and Plesca (2014) compute the wage penalty for illegals along the wage distribution (see their Figure 1), which equals approximately $15-20 \%$, in line with the findings of Massey and Gentsch (2014).

[^13]: ${ }^{26}$ That is, that a Mexican with a university degree would necessarily work in the US in a job that requires a university degree.

[^14]: ${ }^{27}$ Four groups of workers in the implemented Acemoglu and Autor (2011) framework relate to the following education groups: high school dropouts, high school degree, some college education, completed college degree. 100 groups in the implementation of Dustmann et al. (2013) model assume percentiles of observed wage distribution in the U.S.

