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A Ommitted Proofs and Derivations

Proof of Proposition 1

To simplify what follows, we first introduce new notation. The difference between

the new and old values of any object O is denoted as ∆ρO. The greater of the old

and new values of O is denoted as maxO. Thus, for instance, the change in the

wage of a worker of skill x is denoted by ∆ρw(x) and the greater critical skill is

denoted by max xc.

(i) Note that for any x ≥ maxxc we have that:

∆ρm(x) ≥ 0 ⇐⇒ Ḡ(x; ρ1)

Ḡ(x; ρ2)
≥ RW (ρ2) +RW

M (ρ2)

RW (ρ1) +RW
M (ρ1)

RF (ρ1)

RF (ρ2)
. (A.1)

Consider c = inf{x ∈ [0, 1] : ∆ρw(x) > 0 or x = 1}. There are two possibilities:

(a) c > maxxc or (b) c ≤ maxxc. Starting with (a), it follows by inspection of

Equation (6) that ∆ρm(c) ≥ 0. Thus, Equation (A.1) implies that ∆ρm(x) ≥ 0

for all x > c and thus c = x̄. Now, assume (b); it must be the case that ∆ρx
c < 0.

As r(xc,m(xc)) = wc we have that ∆ρm(xc(ρ1)) > 0. Thus, c = x̄. The fact that

x̄ ∈ (maxxc, 1) follows from the following Lemma.

Lemma 1. If ∆ρw(x0) 6= 0 for some x0 ∈ [maxxc, 1], then there exist some

xj ∈ [xc(ρj), 1] such that ∆ρw(x1) > 0 and ∆ρw(x2) < 0.

Proof. It suffices to show that if ∆ρw(x0) > 0 then x2 exists. The proof will be by

contradiction. Suppose that there exists a x0 ∈ [maxxc, 1] such that ∆ρw(x0) > 0,

yet for all x ≥ xc(ρ2) we have that ∆ρw(x) ≥ 0. Note that ∆ρw(x0) ≥ (>)0

implies that π(m(x; ρ2); ρ2) ≤ (<)π(m(x; ρ2); ρ1).1 Therefore ∆ρπ(h) ≤ 0 for all

h ∈ [hc(ρ2), 1], where hc(ρ2) = m(x(ρ2); ρ2). This further implies that hc(ρ2) ≥
hc(ρ1). Continuity implies that there exists some ε such that π(m(x; ρ2); ρ2) <

π(m(x; ρ2); ρ1) for all x ∈ (x0 − ε, x0 + ε). Altogether, this implies that πE(ρ2) <

πE(ρ1) = ci, which contradicts the zero-expected-profits condition.

(ii) First, for any ρ ∈ [0, 1] define the function G(·; ρ) = (1 − ρ)G(·; ρ1) +

ρG(·; ρ2). This allows us to take derivatives with respect to ρ; in particular, note

1This follows directly from profit maximization, as

π(m(x; ρ2); ρ1) ≥ r(x,m(x; ρ2))− w(x; ρ1) ≥ (>)r(x,m(x; ρ2))− w(x; ρ2)

= π(m(x; ρ2); ρ2).
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that: ∫ 1

0

∆ρw(x)dGN(x) =

∫ 1

0

∫ 1

0

∂

∂ρ
w(x; ρ)dGN(x)dρ.

Second, observe that GN(x) ≥hr G(ρ1) ≥hr G(ρ) ≥hr G(ρ2). Third, notice that
∂
∂ρ
w′(x; ρ) = ∂

∂ρ
m(x; ρ) ∂2

∂x∂h
r(x,m(x; ρ)) for x > xc and = 0 for x < xc. Together

with Equation (A.1) this implies that ∂
∂ρ
w′(x′; ρ) > 0 ⇒ ∂

∂ρ
w′(x′′; ρ) > 0 for any

x′′ ≥ x′.

Given the observations above, (ii) follows from the following two Lemmas.2

Lemma 2. For any G(ρ1), G(ρ2) it is the case that:∫ 1

0

∂

∂ρ
w(x; ρ) dG(x; ρ) = 0.

Proof. Using w(x) = r(x,m(x))− π(m(x)) for x ≥ xc we can write

∫ 1

0

∂

∂ρ
w(x)dG(x; ρ) =

∫ 1

0

∂

∂ρ
π(h)dh = 0,

using the facts that average profits are constant, that π(hc) = 0 and that, by

Equation (1) and the Envelope Theorem, ∂
∂ρ
π(m(x)) = ∂m(x)

∂ρ
∂
∂h
r(x,m(x)).

Lemma 3. Suppose that ∂
∂ρ
w′(x′; ρ) > 0 ⇒ ∂

∂ρ
w′(x′′; ρ) > 0 for any x′′ ≥ x′ and

that GN ≥hr G(ρ), then∫ 1

0

∂

∂ρ
w(x; ρ)dGN(x) ≥ ḠN(x0)

Ḡ(x0; ρ)

∫ 1

0

∂

∂ρ
w(x; ρ)dG(x; ρ),

where x0 = inf{x ∈ [0, 1] : ∂
∂ρ
w′(x; ρ) > 0 or x = 1}.

Proof. Denote
∫ 1

0
∂
∂ρ
w(x; ρ)dGN(x) by ∂

∂ρ
AvWoN. Then

∂

∂ρ
AvWoN =

∫ 1

0

ḠN(x)
∂

∂ρ
w′(x; ρ)dx

=

∫ 1

0

ḠN(x)

Ḡ(x; ρ)
Ḡ(x; ρ)

∂

∂ρ
w′(x; ρ)dx

≥ ḠN(x0)

Ḡ(x0; ρ)

∫ 1

0

∂

∂ρ
w(x; ρ)dG(x; ρ).

2Lemma 2 extends Proposition 7 in Costrell and Loury (2004) to a setting with unemploy-
ment. Lemma 3 is closely related to Theorem 3 in Athey (2002).
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Proof of Theorem 1

The proof should be read after (or concurently with) the sketch provided in the

main text.

Wages

The critical skill in country i (i.e., the skill level of the least-skilled worker em-

ployed in country i) is defined as xci = min{xciU , xciM}. Given the critical skill level,

the matching function, wage gradient and wage function are given by Equation (4),

(5) and (6), respectively, and the wage paid to the worker with critical skill level

xci is determined by the outside option of that worker. In particular, if xci < 1 then

wcM(xcM) = wcM , whereas wU(xcU) = min{wcU , e∆UMPU (wcM/PM + δUM)}, where

wci ≡ P c
i w̄

c
i . To see why, first suppose that i = M (the argument for i = U

is analogous). It follows immediately from Equation (16) and the definitions of

xcMM and U c
MM that if xci < 1 then wcM(xcM) ≥ PMw

c
M . As fM(0, hM) < 0, it

follows that in equilibrium workers with skill xM close to 0 cannot be employed

in Mexico; thus xcM > 0. It follows that wcM(xcM) ≤ PMw
c
M—the continuity of the

revenue function implies that otherwise workers with skill slightly lower than xcM
would strictly prefer to be employed in Mexico than remain unemployed, which

contradicts the definition of the critical skill.

Finally, because xcMM = xcM we have that if xcMM < 1, then wM(xcMM) =

wcM . This further implies from Equation (16) that if xcUM < 1, then wU(xcUM) =

PU
(
e∆UMwcM/PM + δUM

)
.

Supply Functions

Given the definition of the separation function, Equation (19) follows immediately

by the exact same reasoning as in the proof of Lemma 2 in Gola (2019).

Feasibe Allocations

Define the set E of partial equilibrium allocations as the set of allocations for which

there exists a pair of wage functions wU , wM that induces both the supply and the

demand functions to be equal to SU , SM and satisfies the zero-expected-profit-

condition. Define also xsM = inf{xM ≥ xcM : ψ(xM) = 1}. Equations (18)–(21)

and the requirement that labor markets clear put strong restrictions on the partial

equilibrium allocations. In particular, the restrictions on allocations imply that

for any A ∈ E, it must be the case that (1) Sij : [0, 1]→ [0, RW
i ] is non-decreasing,
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absolutely continuous, and semi-differentiable on the interior, with Sij(1) = 0;

(2) the function ψ : [xcMM , 1] → [xcUM , 1] that satisfies ∂C(ψ(xM), xM)/∂xM =

−∂+SMM(xM)/∂xM is well-defined, with a continuous, strictly positive derivative

at xM ∈ (xcM , x
s
M); (3) SMU , SMM satisfy Equation (20) and −∂+SMi(xi)/∂xM ∈

(0, 1); (4) SUU(xU) satisfies (21), and (4) Si(0) ≤ RF
i , where Si(xi) = Sii(xi) +

Sij(xi) and SMU(xM) = 0.3 The allocations meeting conditions (1)–(4) will be

called feasible and the set of all feasible allocations will be denoted by A. Clearly,

E ⊂ A.

Uniqueness

Proposition 1. A worker and firm allocation A∗ ∈ A can hold in the partial labor

market equilibrium if and only if it maximizes the weighted sum of (net) revenues:

A∗ ∈ E⇔ V (A∗)− V (A) > 0 for all A ∈ A \ {A∗}.

Proof. The proof will consist of two steps. First, we will prove that

A∗ ∈ E⇒ V (A∗)− V (A′) ≥ 0 for all A′ ∈ A. (A.2)

and, further, that if V (A∗) = V (A′) then A′ 6∈ E. Second, we will prove

A∗ ∈ E⇐ V (A∗)− V (A′) ≥ 0 for all A′ ∈ A \ A∗, (A.3)

which will complete the proof.

“If”

Assume that E is non-empty and consider some A∗, A′ such that A∗ ∈ E, A′ ∈ A
and A∗ 6= A′.4 The tuple w = (wM , wS) that clears markets for A∗ is denoted as

w∗.5

We can write the total real wage bill of country j citizens who work in country

3Condition (1) follows from Equations (18)–(21) and market clearing. Condition (2) follows
from differentiating Equation (18) on (xcM , x

s
M ) and noting that wages must be non-decreasing

in equilibrium; (3) follows from Equations (19) and (20); and (4), obviously, from Equation (21).
Note that RWi denotes the measure of workers born in country i, with RWM normalized to 1.

4Here, and in the remainder of this proof, by 6= we mean the negation of “equal almost
everywhere”.

5Or some selection from the set of such functions, for cases when Si(0) = 0 for some i ∈
{U,M}.
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i, under wage function wi and supply function Sij as:

w̄Aij(wi, Sij) =

∫ 0

1

wi(t)

Pi
dSij(t).

Define the weighted average of (net) real wages of all workers as:

w̄A(w,A) = e−∆UM
[
w̄AUM(wU , SUM) + w̄AUU(wU , SUU) + w̄cUF (xcU(SUU))RW

U

]
+w̄AMM(wM , SMM) + w̄cMC(xcUM(A), xcM(A))− δUMSUM(0).

As S∗UM , S
∗
M , S

∗
UU and w∗ are the equilibrium supply and wage functions, respec-

tively, it follows from the first equilibrium condition (Definition 2) that

w̄A(w∗, A∗) ≥ w̄A(w∗, A′). (A.4)

Profit maximization implies that, if RF ′
i > 0, then

πE∗i
Pi
− cei =

1

Pi

∫ 1

0

max{ri(µi(h), h)− w∗i (µi(h)), 0} dh− cei

≥
Ti(S

′
i, R

F ′
i )− wAij(w∗i , S

′
ij)− wAii (w∗i , S

′
ii)

RF ′
i

− cei , (A.5)

where µi is the optimal hiring function defined in Section 3.3. Suppose that

RF∗
U , RF∗

M > 0, the other cases are considered in footnote 6. Note that if RF∗
U , RF∗

M >

0, then

µi(h) = (S∗i )
−1((1− h)RF∗

i ) for h ∈ [1− S∗i (0)/RF∗
i , 1], (A.6)

whereas for h ∈ [0, 1 − S∗i (0)/RF∗
i ] we have ri(v, h) − w∗i (v) ≤ 0 for all v ∈ [0, 1].

This gives:

πE∗i
Pi
− ci =

(
Ti(S

∗
i , R

F∗
i )− w̄Aij(w∗i , S∗ij)− w̄Aii (w∗i , S∗ii)

)
/RF∗

i − cei . (A.7)

Note also that e−∆UMRF ′
U (

πE∗U
PU
− ceU) +RF ′

M (
πE∗M
PM
− ceM) ≥ V (A′)− w̄A(w∗, A′). If

RF ′
M , R

′
S > 0 this follows directly from Equation (A.5). If RF ′

i = 0, then it follows

as Ti(S
′
i, R

F ′
i )−RF ′

i c
e
i −wAij(w∗i , S

′
ij)−wAii (w∗i , S

′
ii) ≤ 0 = RF ′

i (πE∗i − cei ). Using the
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fact that
πE∗i
Pi
− ci = 0 by the definition of equilibrium, we can write

V (A∗)− w̄A(w∗, A∗) = e−∆UMRF∗
U (

πE∗U
PU
− ceU) +RF∗

M (
πE∗M
PM
− ceM)

= e−∆UMRF ′

U (
πE∗U
PU
− ceU) +RF ′

M (
πE∗M
PM
− ceM)

≥ V (A′)− w̄A(w∗, A′). (A.8)

This proves implication (A.2) by Equation (A.4).6

Finally, suppose that A′ ∈ E and that V (A∗) = V (A′). If S∗i 6= S ′ for any i,

then Equation (A.4) must hold strictly, and thus V (A∗) > V (A′). Hence, S∗i = S ′i

for all i and RF∗
i 6= RF ′

i for some i ∈ {U,M}. However, as the profit holding under

allocation A is

πEi (A) =

∫ 1

1−Si(0)
RF
i

∫ h

1−Si(0)
RF
i

∂

∂h
ri(S

−1
i ((1− p)RF

i ), p)dp dh+ ri(S
−1
i (RF

i ), 0)− wci

(A.9)

and surplus increases strictly with firm type, it follows that if RF∗
i 6= RF ′

i then

πEi (A∗) 6= πEi (A′) = Pic
e
i , implying that A∗ 6∈ E; contradiction!

“Only If”

This part of the proof will proceed in two steps. First, we will decompose the opti-

mization problem into inner and outer problems, derive the first-order conditions

for the inner problem, and show that any maximizer of the inner problem must

satisfy conditions (1), (2) and (4) of the competitive equilibrium. Second, we show

that any maximizer of the outer problem needs to additionally meet condition (3),

thus completing the proof.

6For RF∗i = 0 we have by the definition of equilibrium that
πE∗
i

Pi
− cei ≤ 0. If RF

′

i > 0 we have
that

0 = Ti(S
∗
i , R

F∗
i )− w̄Aij(w∗i , S∗ij)− w̄Aii(w∗i , S∗ii)−RF∗i cei

≥ RF
′

i (
πE∗i
Pi i

− cei ) ≥ Ti(S′i, RF
′

i )− wAij(w∗i , S
′

ij)− wAii(w∗i , S
′

ii)−RF
′

i c
e
i .

Also, trivially, if RF
′

i = 0, then

0 = Ti(S
∗
i , R

F∗
i )− w̄Aij(w∗i , S∗ij)− w̄Aii(w∗i , S∗ii)−RF∗i cei

= Ti(S
′
i, R

F ′

i )− wAij(w∗i , S
′

ij)− wAii(w∗i , S
′

ii)−RF
′

i c
e
i .

Thus, it follows that V (A∗)− w̄A(w∗, A∗) ≥ V (A′)− w̄A(w∗, A′).
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“Inner” Problem Denote the set of all functions that meet conditions (1) and

(2) of the set of feasible allocations (page 5) by SMM , and the set of all functions

that meet condition (1) only by S. Further, denote by SUM(SMM) the set of

functions SUM ∈ S that satisfy condition (3) of set A for a given SMM ∈ SMM .

Note that if xcMM < 1, then the set SUM(SMM) is a singelton, which will be

denoted by SUM(SMM).

For given RF
M , R

F
U we can then define the set A(RF

U , R
F
M) of all such SMM , SUU ∈

S that there exists some SUM ∈ SUM(SMM) such that (SUU , SUM , SMM , R
F
U , R

F
M) ∈

A. Then the optimization problem maxA∈A V (A) is equivalent to the optimization

problem:

max
(RFM ,R

F
U )∈R2

≥0︸ ︷︷ ︸
outer problem

max
(SUU ,SMM )∈A(RFU ,R

F
M )
V (SUU , SMM , R

F
U , R

F
M)︸ ︷︷ ︸

inner problem

,

where

V (SUU , SMM , R
F
U , R

F
M) ≡ max

SUM∈SUM (SMM )
V (SUU , SUM , SMM , R

F
U , R

F
M)

s.t. SU(0) ≤ RF
U .

Definition 1. The interior int(A(RF
U , R

F
M)) of set A(RF

U , R
F
M) consists of all such

SMM , SUU ∈ A(RF
U , R

F
M) that xcUU , x

c
UM , x

c
MM < 1 and Si(0) < RF

i .

We will show in detail that all interior solutions of the inner problem satisfy

conditions (1), (2) and (4) of the competitive equilibrium. The proof for corner

(i.e., not interior) solutions is conceptually identical but requires small tweaks for

each of the possible cases.

Fix (RF
M , R

F
U ) ∈ R2

>0 and consider a maximizer (S∗UU , S
∗
MM) ∈ int(A(RF

U , R
F
M))

of the inner problem.7 Consider a one-parametric family of functions SMM(·; tM)

such that (a) for each tM ∈ [0, 1], (S∗UU , SMM(tM)) ∈ int(A(RF
U , R

F
M)), and (b)

there exists some t∗M that corresponds to S∗MM . It follows that

t∗M ∈ arg max
tM

V (S∗UU , SUM(SMM(tM)), SMM(tM), RF
U , R

F
M),

and any maximizer of the original problem has to satisfy the first-order condi-

tions of this single-variable problem. A family SMM(·; tM) that satifies the con-

ditions above can be constructed for any interior (S∗UU , S
∗
MM).8 Further, the very

7 Note that interior solutions exist only if (RFM , R
F
U ) ∈ R2

>0.
8Consider a family of separation functions, such that ψ(xM ; tM ) = ψ∗(xM )+(xM−xc∗M )2(xM−

xs∗M )2 ((tM − 1)ε+ tM ε̄) for xM ∈ (xc∗M , x
s∗
M ), and ψ(xM ; tM ) = ψ∗(xM ) otherwise. As long as

ε, ε̄ are small enough, each ψ(·; tM ) is strictly increasing and thus gives raise to a supply function
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same exercise can be also conducted for a family of US citizens’ supply functions,

SUU(·; tU).

Define the function

V (tM ;S∗UU , R
F
U , R

F
M) = V (S∗UU , SUM(SMM(tM)), SMM(tM), RF

U , R
F
M),

and analogously function V (tU ;S∗MM , R
F
U , R

F
M). In the remaining analysis of the

inner problem we will supress (S∗UU , R
F
U , R

F
M) from notation. The optimal matching

function that holds under (SUU(tU), SUM(SMM(tM)), SMM(tM)) will be denoted

by mi(xi; tM) = µ−1
i (xi; tM) (see Equation (A.6)). Note that as tM changes, the

implied separation function ψ(·; tM) changes as well. With this in mind, it can be

shown easily that

∂

∂tM
mU(xU) =

∂
∂tM

SMM(φ(xU))

RF
U

.

Further, note that by integrating Ti(A) by substitution, and denoting ri(xi,hi)
Pi

by

r̄i(xi, hi) we get that

Ti(A) = RF
i

∫ 1

mi(xci )

r̄i(µi(h), h)dh.

Differentiating wrt tM yields

d

dtM
Ti(A) = −RF

i r̄i(x
c
i ,mi(x

c
i))

d

dtM
mi(x

c
i)

−RF
i

∫ 1

mi(xci )

∂
∂tM

mi(µi(h))

m′i(µi(h))

∂

∂xi
r̄i(µi(h), h)dh

[by substitution] = r̄i(x
c
i ,mi(x

c
i))

∂

∂tM
Si(0) +RF

i

∫ 1

xci

d

dtM
mi(xi)

∂

∂xi
r̄i(xi,mi(xi))dxi.

Thus it can be shown that:

∂

∂tM
V =

d

dtM

[
e−∆UMTU(A) + TM(A) + w̄cMC(xcUM , x

c
MM)− δUMSUM(0)

]
= e−∆UM

∫ 1

xcMM

∂

∂tM
SMM(xM)ψ′(xM)

∂

∂xU
r̄U(ψ(xM),mU(ψ(xM)))dxM

−
∫ 1

xcMM

∂

∂tM
SMM(xM)

∂

∂xM
r̄M(xM ,mM(xM))dxM

SMM (·; tM ). It follows by the definition of xs∗M that if (S∗UU , S
∗
MM ) ∈ int(A(RFU , R

F
M )) then there

must exist small enough ε, ε̄ > 0 that (S∗UU , SMM (tM )) ∈ int(A(RFU , R
F
M )) for all tM ∈ [0, 1].
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+
∂

∂tM
SUM(0)e−∆UM

(∫ xcUM

xcU

∂

∂xU
r̄U(xU ,mU(xU))dxU + r̄U(xcU ,mU(xcU))

)
− ∂

∂tM
SUM(0)δUM

+r̄M(xcM ,mM(xcM))
∂

∂tM
SMM(0) + w̄cM

d

dtM
C(xcUM , x

c
MM), (A.10)

∂

∂tU
V =

d

dtU
e−∆UM

[
TU(A) + wcUF (xcUU)RW

U

]
= e−∆UM

∂

∂tM
SUU(0)r̄U(xcU ,mU(xcU))

+e−∆UM
∂

∂tM
SUU(0)

(∫ xcUU

xcU

∂

∂xU
r̄U(xU ,mU(xU))dxU − w̄cU

)
(A.11)

Because V (ti) is a single-variable function, it follows that ∂
∂ti
V (ti) ≤ 0 if t∗i ∈ [0, 1)

and ∂
∂ti
V (ti) ≥ 0 if t∗i ∈ (0, 1]. Crucially, these conditions must hold for all families

Sii(·; ti) that meet conditions (a) and (b) above.

Lemma 4. For any interior maximizer (S∗UU , S
∗
MM) of the inner problem, it is the

case that if xM ∈ (xc∗MM , x
s∗
MM), then

o(xM) ≡ e−∆UMψ∗xM (xM)
∂

∂xU
r̄U(ψ∗(xM),m∗U(ψ∗(xM)))− ∂

∂xM
r̄M(xM ,m

∗
M(xM)) = 0,

(A.12)

where ψ∗xM (xM) = ∂
∂xM

ψ∗(xM).

Proof. Consider such family SMM(·; tM) that xcMM(tM) = xc∗MM , SMM(0; tM) =

S∗MM(0), ∂
∂xM

SMM(xc∗MM ; tM) = ∂
∂xM

S∗MM(xc∗MM), and SMM(xM ; tM) = S∗MM(xM)

for all xM ≥ xs∗MM .This implies that xcMM , x
c
UM and SMM(0) do not change with

tM , and thus neither does SUM(0), because C(xc∗UM , x
c∗
MM) = 1−SUM(0)−SMM(0)

by the definition of SUM(SMM). It follows that Equation (A.10) reduces to

∂

∂tM
V (tM) = e−∆UM

∫ xsMM

xcMM

∂

∂tM
SMM(xM)ψ′(xM)

∂

∂xU
r̄U(ψ(xM),mU(ψ(xM)))dxM .

−
∫ xsMM

xcMM

∂

∂tM
SMM(xM)

∂

∂xM
r̄M(xM ,mM(xM))dxM (A.13)

Suppose that there exists some xM ∈ (xc∗MM , x
s∗
MM) such that o(xM) 6= 0.

Note that because ψ(·) is continuously differentiable, o(·) is continuous. This

implies that there exists some δ > 0 and some x̄M such that o∗(xM) 6= 0 for all

xM ∈ [x̄M − δ, x̄M + δ]. We can always construct a feasible family SMM(·; tM)

such that for all t′′M > t′M , sgn(SMM(xM ; t′M) − SMM(xM ; t′′M)) = sgn(o(xM)) and

10



t∗M ∈ (0, 1).9 For such a family (a) ∂
∂tM

V (t∗M) = 0, and (b) ∂
∂tM

V (t∗M) 6= 0 by

Equation (A.13); contradiction!

We are now ready to show that for any interior (S∗UU , S
∗
MM) there exists a

pair of wage functions (wU , wM) which together with (S∗UU , S
∗
MM) satisfy condi-

tions (1), (2) and (4) of the equilibrium. As discussed on page 4 of this Ap-

pendix, the wage functions wU , wM for which conditions (2) and (4) of equilibrium

are satisfied, are given by Equation (6), where w̄cM(xcM) = w̄cM and w̄U(xcU) =

min{w̄cU , e∆UM (w̄cM + δUM)}. For condition (1) to be satisfied, it must be the case

that these wU , wM satisfy (i) Equation (18) as well as (ii) w̄U(xc∗UU) = w̄cU .

First, consider ∂
∂tU

V (tU). It follows immediatelly from Equation (A.11) that

r̄U(xc∗U ,mU(xc∗U )) +

∫ xc∗UU

xc∗U

∂

∂xU
r̄U(xU ,mU(xU))dxU = w̄cU . (A.14)

Let us turn attention to ∂
∂tM

V (tM) and consider such family SMM(·; tM) that

SMM(xc∗MM ; tM) = S∗MM(xc∗MM), xcUM(tM) = xc∗UM , SMM(xM ; tM) = S∗MM(xM) for

all xM ≥ xs∗MM and t∗M ∈ (0, 1). This implies that (a) d
dtM

SUM(0; t∗M) = 0 and (b)
d

dtM
SMM(0) = ∂

∂tM
xcMM(tM) ∂

∂xM
C(xcMM(tM), xc

∗
MU). Substituting this and Equa-

tion (A.12) into Equation (A.10) yields

r̄M(xc∗M ,mM(xc∗M)) = w̄cM . (A.15)

Consider such family SMM(·; tM) that SUM(0; tM) 6= S∗UM(0) for tM 6= t∗M , and

SMM(xM ; tM) = S∗MM(xM) for all xM ≥ xs∗MM . Then subsituting Equations (A.12)

and (A.15) into Equation (A.10) yields

∂

∂t∗M
V (t∗M) = e−∆UM

∂

∂t∗M
SUM(0)

[∫ xc∗UM

xc∗U

∂

∂xU
r̄U(xU ,mU(xU))dxU + r̄U(xc∗U ,mU(xc∗U ))

]
− ∂

∂t∗M
SUM(0) (w̄cM + δUM) = 0 (A.16)

9That is, SMM (xM ; t′′M ) − SMM (xM ; t′M )) = 0 only if o(xM ) = 0, and if o(xM ) 6= 0 then
SMM (xM ; t′′M ) − SMM (xM ; t′M )) has the same sign. To construct such a family, consider any
interval [x′M , x

′′
M ] ⊂ [xc∗MM , x

s∗
MM ] such that o(x′M ) = o(x′′M ) = 0 and o(xM ) 6= 0 and is of the

same sign for all xM ∈ [x′M , x
′′
M ]. Then let ψ(xM ; tM ) solve

∂

∂xM
C(ψ(xM , tM ), xM ) = sgn(o(xM ))(xM −

x′M + x′′M
2

)3(xM − x̄′M )2(xM − x̄′′M )2 ((tM − 1)ε+ tM ε̄)

− ∂+
∂xM

S∗MM (xM )

for some positive but very small ε, ε̄. If xM belongs to an interval on which o(xM ) = 0, then set
ψ(xM ; tM ) = ψ∗(x(M)).
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Substituting Equation (A.14) into (A.16) yields

e∆UM (w̄cM + δUM)− w̄cU = w̄U(xc∗UM)− w̄U(xc∗UU), (A.17)

which implies that xc∗UM ≥ xc∗UU if and only if e∆UM (w̄cM + δUM) ≥ w̄cU .

Suppose that xc∗UM ≥ xc∗UU . Then w̄U(xc∗U ) = w̄cU and condition (ii) follows imme-

diately. Further, Equation (A.14) reduces to r̄U(xc∗U ,mU(xc∗U )) = w̄cU . Substituting

this into Equation (A.16) ensures that w̄U(xc∗UM) = e∆UM (w̄M(xc∗MM) + δUM) . As

Equation (A.12) is the same as the first derivative of Equation (18) on (xc∗UM , x
s∗
UM),

it follows that condition (ii) must be satisfied as well.

Suppose that xc∗UM < xc∗UU . Then w̄U(xc∗UM) = e∆UM (w̄M(xc∗MM) + δUM), which

reduces Equation (A.17) to w̄U(xc∗UU) = w̄cU . Again, Equation (A.12) is the same

as the first derivative of Equation (18) on (xc∗UM , x
s∗
UM), ensures that condition (ii)

must be satisfied as well.

“Outer” Problem The proof that the maximizers of the outer problem satisfy

condition (3) of the equilibrium, follows the logic of the proof of Lemma OA.11 in

Gola (2019). Consider some maximizer (RF∗
U , RF∗

M ) of the outer problem and some

RF ′
i . Define the function RF

i (tR) = tRR
F∗
i + (1− tR)RF ′

i . Note that

T̄i(A) ≡
∫ 0

1

r̄i

(
xi,max{1− Si(xi)/RF

i , 0}
)

dSi(xi) =
Ti(A)

Pi
if RF

i > 0

which allows us to drop condition (4) from the definition of the set of feasible

allocations as A. Denote this modified set of feasible allocations by Ā, and by V̄

the the total weighted net revenue function, in which Ti has been replaced by T̄i.

Then define

V I(SUU , SMM , tR) = max
SUM∈SUM (SMM )

V̄ (SUU , SUM , SMM , R
F
U (tR), RF

M(tR)).

It is easy to show that V I(SUU , SMM , tR) is differentiable for all tR but at most

4 (tR ∈ {0, 1} and RF
i (tR) = Si(0)), and also that whenever V I

t (SU , SM , t) does

exist we have that

V I
tR

(SM , SS, t) = (RF∗
U −RF ′

U )(
1

PU
πEU (SU , RU(t))− ceU)

+(RF∗
M −RF ′

M )(
1

PM
πEM(SS, RS(t))− ceM),

where

12



πEi (Si, R
F
i ) =


∫ 1

0

∫ h
0

∂
∂h
ri(S

−1
i ((1− p)RF

i ), p)dp+ ri(S
−1
i (RF

i ), 0) dh for Ri ∈ (0, Si(0)),∫ 1

1−Si(0)
RF
i

∫ h
1−Si(0)

RF
i

∂
∂h
ri(S

−1
i ((1− p)RF

i ), p)dp dh for RF
i > Si(0).

(A.18)

Thus V (SUU , SMM , ·) is absolutely continuous for any (SUU , SMM) ∈ Ā and any

choice of RF ′
i . Clearly, 1

Pi
πEi (Si, R

F
i (t))− cei ∈ [−ci, r̄i(1, 1)− cei ], implying

|VtR(SUU , SMM , t)| ≤ (RF∗
U −RF ′

U ) max{ceU , r̄U(1, 1)}+(RF∗
M −RF ′

M ) max{ceM , r̄M(1, 1)}

which proves

V (tR) ≡ max
(SUU ,SMM )∈A

V I((SUU , SMM , tR)

is absolutely continuous by Theorem 2 in Milgrom and Segal (2002).

Define SUU(tR), SMM(tR) ∈ arg max(SUU ,SMM )∈A V
I((SUU , SMM , tR), T (tR) ≡

V (tR) + ceUR
F
U (tR) + ceMR

F
M(tR) and pick any t ∈ (0, 1) for which V (·) is differen-

tiable. Consider two c̃eU , c̃
e
M ∈ R≥0 such that c̃ei = πEi (RF

U (t), RF
M(t)). For entry

costs c̃eM , c̃
e
S, the allocation A(t) = (SUU(t), SUM(SMM(t)), SMM(t), RF

U (t), RF
M(t))

is a partial labor market equilibrium, implying that it maximizes the function

Ṽ (t) = T (t)− c̃eURF
U (t)− c̃eMRF

M(t). Clearly, both Ṽ (·) and T (·) are differentiable

at t as well. It follows from first-order conditions that ṼtR(tR) = 0 implying that

TtR(tR) = (RF∗
U −RF ′

U )c̃eU + (RF∗
M −RF ′

M )c̃eM

= (RF∗
U −RF ′

U )πEU (RF
U (t), RF

M(t)) + (RF∗
M −RF ′

M )πEM(RF
U (t), RF

M(t)).

This proves that

VtR(t) = (RF∗
U −RF ′

U )(πEU (RF
U (t), RF

M(t))−ceU)+(RF∗
M −RF ′

M )(πEM(RF
U (t), RF

M(t))−ceM).

Note, by the way, that because we can induce an equilibrium for any values of

(RF
U , R

F
M) by an appropriate choice of (c̃eU , c̃

e
M), it follows from the “if” part of this

proof, that the set arg max(SUU ,SMM )∈A V
I(SUU , SMM , tR) is a singleton.

Now, let us show that if RF∗
U > 0 then πEM ≥ ceMPM . First, pick some

RF ′
M < RF∗

M and define V (t) for (RF∗
U , RF∗

M ) and (RF∗
U , RF ′

M ). From the definition

of maximum follows that there exists some t′R ∈ (0, 1) such that for any tR > t′R
we have πEM(RF

U (tR), RF
M(tR)) ≥ ceMPM . Recall that for any allocation A(t) the

average profit of firms in country i is given by Equation (A.9); it follows from

13



continuity of (SUU(t), SMM(t)) that πEM(RF∗
U , RF∗

M ) ≥ ceMPM .10 It remains to show

that if RF∗
U ≥ 0 then πEM ≤ ceMPM , but the proof is completely analogous, because

πEi (t) is continuous even for RF
M = 0, in the sense that the limit of the average

profit that holds for RF
M > 0 as RF

M → 0 is an equilibrium for RF
M = 0.11 The

proof for U.S. is analogous.

Existence

Consider the set Ā(RF
U , R

F
M) of all functions SUU , SUM , SMM that meet conditions

(1)–(4) on page 5 of this Appendix given (RF
U , R

F
M). As all functions in Ā(RF

U , R
F
M)

are absolutely continuous, differentiable almost everywhere and their derivative lies

in [−1, 0], it follows that they are Lipschitz continuous with the same Lipschitz

constant. Hence, by the Arzela-Ascoli theorem Ā(RU , RM) is compact. Therefore,

it follows from the Extreme Value theorem that the set

V (RF
U , R

F
M) ≡ arg max

(SUM ,SUM ,SMM )∈Ā(RFU ,R
F
M )

V (SUU , SUM , SMM , R
F
U , R

F
M)

is non-empty. We have shown on page 13 that V (RF
U , R

F
M) is a singleton, and in

footnote 10 that it is continuous in RF
U , R

F
M . Thus, employing the same logic as

in the proof of Theorem OA.2 in Gola (2019) it can be easily shown that there

exists a compact set R̄ ∈ R2
≥0 such that:

max
R̄

V (RU , RM) = max
R2≥0

V (RU , RM).

It follows from the Extreme Value theorem that arg maxA V (A) is non-empty. It

follows trivially from Proposition 1 that the equilibrium exists and is unique.

Comments on Efficiency

It is worth stressing that, in contrast to Proposition OA.8 in Gola (2019), our

Proposition 1 does not imply that the partial labor market equilibrium maximizes

total welfare (for given prices): The total welfare function would weight the welfare

of Mexican stayers and United States citizens in the same way, which is not the

10It follows from Berge’s (1963) maximum theorem that the correspondence S(tR) ≡
arg max(SUU ,SMM )∈A V

I((SUU , SMM , tR) is upper-hemicontinuous. However, as this correspon-
dence is singleton valued, this implies that it is continuous.

11This is because the equilibrium wage function that holds in the non-degenerate country
(U.S.) is trivially continuous in RFM , and the U.S. wage function determines the lowest wage
function in Mexico that prevents any worker from remaining in that country. A similar reasoning
holds even if both countries are degenerate.
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case in Equation (22). In short, assigning a marginal Mexican worker to the United

States creates additional revenue (w̄U(xU)), an additional pecuniary migration cost

(δUM), and the additional utility cost (worth (1 − e−∆UM )(w̄U(xU) − δUM) units

of the consumption good). These are the only changes that are reflected in the

no-arbitrage condition (Equation (18)); on top of that, however, the addition of a

marginal Mexican worker changes the wages of all other Mexican workers in the

United States, and thus also the monetary equivalent of the utility migration cost

for all of them. This additional change in costs is not included in the no-arbitrage

condition, creating a wedge between maximizing revenue net of all the costs and

the equilibrium. In broad strokes, this is reminiscent of the results in Dupuy et al.

(2017), where imperfect transferability of utility also rules out the efficiency of the

equilibrium, but the equilibrium nevertheless corresponds to the optimum of an

assignment problem in which the welfare of all agents is appropriately weighted.

Proof of Theorem 2

Define a map F (P) ≡ YW − p1−ε
W

∑
k YkP

ε−1
k τ 1−ε

kW . Because pW qW = YW Equation

(13) for i = W can be rewritten as

F (P) = 0.

Substituting this into Equation (23) results in

Pi =

[
(τiU)1−εYU

aF (P) +
∑

k Ykτ
1−ε
kU P ε−1

k

+
(τiM)1−εYM

aF (P) +
∑

k Ykτ
1−ε
kM P ε−1

k

+ (τiWpW )1−ε
] 1

1−ε

,

(A.19)

where a ∈ (0,mini∈{U,M,W},j∈{U,M}{( τji
pW τiW

)1−ε}). It is easy to show that any vector

P = (PU , PM , PW ) that solves the system of three Equations given by (A.19) must

also satisfy Equation (13).12 Therefore, it follows trivially that any such P solves

also the system given by (23).

Lemma 5. Consider the set P of all P ∈ R3
>0 that solve Equation (A.19) for all

i ∈ {U,M,W}. The set P is non-empty.

Proof. Consider the interval Ii = [
[

(τiU )1−εYU
aYW

+ (τiM )1−εYM
aYW

+ (τiWpW )1−ε
] 1

1−ε
, τiWpW ]

12Multiplying voth sides of (A.19) by P ε−1i Yi, summing by i and rearranging results in

F (P)

[
1 +

aYU

aF (P) +
∑
k Ykτ

1−ε
kU P ε−1k

+
aYM

aF (P) +
∑
k Ykτ

1−ε
kM P ε−1k

]
= 0,

which implies that F (P) = 0.
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and define the map T : IU × IM × IW → IU × IM × IW such that

Ti(P) ≡
[

(τiU)1−εYU

aF (P) +
∑

k Ykτ
1−ε
kU P ε−1

k

+
(τiM)1−εYM

aF (P) +
∑

k Ykτ
1−ε
kM P ε−1

k

+ (τiWpW )1−ε
] 1

1−ε

.13

(A.20)

Clearly, T is increasing. Thus, the Lemma follows from Tarski’s (1955) fixed

point theorem.

The largest vector of price indexes solving Equation (A.19) for YU , YM , YW ∈
R3
≥0 is denoted by P̄(YU , YM , YW ), and is continuous in all arguments. Define

the map Bi : R3
≥0 → R≥0 such that Bi(Y) =

∑
k∈{U,M,W}

Ykτ
1−ε
ki

P̄k(Y)1−ε
. Note that

Bi is homogenous of degree 1 (because P̄ (·) is homogeneous of degree zero) and

increasing. Therefore, maxY≤λ1 Bi(Y) = λBi(1).

Denote by A(Y) the allocation that holds in the equilibrium of the partial

labor equilibrium under price index vector P̄(Y) and expenditure vector Y. Then

we can define the map K : R3
≥0 → R3

≥0 such that

Ki ≡

Bi(Y)
1
ε

∫ 0

1
fi(x, 1− Si(x; Y)/RF

i (Y))
ε−1
ε dSi(x; Y) if i ∈ {U,M},

pW qW if i = W.

Any fixed point of this map characterizes a general equilibrium of our model.

For i ∈ {U,M} denote
∫ 0

1
fi(x, 1− Si(x)/RF

i )
ε−1
ε dSi(x) by Qi(Si). Then Q̄i =

maxSi∈Si Qi(Si), where Si is the set of all feasible supply functions in country i.

Set

λ = max{ max
i∈{U,M}

[Q̄ε
iBi(1)]

1
ε−1 , pW qW}.

Thus if Y ≤ λ then Ki(Y) ≤ λ.14 Thus we can define a restriction K R : [0, λ]3 →
[0, λ]3 of map K . K R must have a fixed point by Brouwer’s fixed-point theorem,

and – therefore – so does K .15 This concludes the existence proof.

It can be easily shown that the equilibrium must be unique if τij = 1 for all

i, j ∈ {U,M,W}. First note that then Equation (23) is solved uniquely by PU =

PM = PW . This further implies that BU(Y) = BM(Y) = BW (Y). F (P) = 0

gives that BW (Y) = pεW qW , which pins down the unique equilibrium.

13To see that Ti always maps into Ii, first note that it is increasing in P for all P ≥ 0, and

that T (0, 0, 0) is equal to the lower bound of Ii. Secondly, Yi

(
aF (P) +

∑
k∈{U,M,W}

Ykτ
1−ε
ik

P 1−ε
k

)−1
is always positive, implying that Ti(P) ≤ τWipW .

14Trivially for i = W . For i ∈ {U,M} we have Ki(Y) ≤ [Q̄iBi(1)]
1
ελ

1
ε ≤ λ.

15K is continuous by the same reasoning as that in footnote 10.
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Equilibrium with Empty Mexico

We will now demonstrate that if the transportation costs either to or from Mexico

are sufficiently large, then there must exist an equilibrium in which SM(0) = 0.

In what follows we use the notation from the proof of Theorem 2. Consider an

auxiliary economy in which rAM(x, h) = 0 but the rest of the model is unchanged.

Trivially, if there exists an equilibrium of the actual model in which SM(0) = 0,

then the vector of equilibrium total expenditures YA must satisfy K A(YA) = YA,

where K A is the map determining the equilibrium of the auxiliary economy. It

follows that YA is independent of τiM , τMi for all i ∈ {U,W}; by inspection of

Equation (A.19) so are P̄U(YA), P̄W (YA). Suppose that τWM = τMW = τUM =

τMU = a. Then

BM = a
1−2ε
ε

(∑
k∈{U,W} Y

A
k (P̄k(Y

A))ε−1
)1/ε

[
Y A
U

(∑
k∈{U,W} Y

A
k

(
P̄k(YA)/τUk

)ε−1
)−1

+ p1−ε
W

] 1
1−ε

Thus, if

a ≥

(ŪM + cfM)fM(1, 1)
1−ε
ε

[
Y A
U

(∑
k∈{U,W} Y

A
k

(
P̄k(Y

A)/τUk
)ε−1

)−1

+ p1−ε
W

] 1
1−ε

(∑
k∈{U,W} Y

A
k (P̄k(YA))ε−1

)1/ε


ε

2ε−1

then w̄M(1) ≤ rM(1, 1)/PM ≤ ŪM and thus SM(0) = 0 as required.

17



B Copula Functions
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Figure B.1: Two-dimensional Distributions for Clayton, Gaussian and Gumbel
Copulas

Note: Figure B.1 presents the distributions of skills assuming different copula functions (row 1:
Clayton, row 2: Gaussian, row 3: Gumbel), and low (column 1) and high (column 2) correlations
between skills.
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C Calibration Details

Mapping Model Moments to Data The calibration represents a static state

of the Mexican and U.S. economies in 2015. We differentiate between two types

of empirical moments that we use to calibrate the model. First, we collect a

set of observables that directly determine model parameters. We call this set of

observables group (A) in Table C.1. Second, we collect datapoints that correspond

to moments generated by the model, which enables us to identify the remaining

model parameters, gathered in group (B).

The population data for the United States and Mexico for 2015 are collected

from The Database in Immigrants in OECD and non-OECD Countries (DIOC). As

indicated in the main text, populations are divided into the group of U.S. residents,

Mexican stayers and Mexican immigrants to the United States. By normalizing

Mexico’s population to unity, we set the size of the total U.S. population to RW
U =

2.850. DIOC indicates that almost 14% of all Mexicans live in the US, setting

SUM = 0.139. The shares of unemployed in the US and Mexico equal to 5.75%,

and 3.45%, respectively. After accounting for the employment and migration

status, the workforce in both countries equals to: SM(0) = 0.827 and SU(0) =

2.688 + 0.139 = 2.827, respectively.

The measures of potential firms are set equal to the number of employed and

unemployed individuals plus the number of active job vacancies (available for the

United States from the Bureau of Labor Statistics, for Mexico, we generate a

proportional number of vacancies). This yields RF
U = 3.15 and RF

M = 0.99.

For all wage distributions we remove 2 percent of the lowest and highest

values to skip outliers. Then, we smooth the data by interpolating the missing

values locally. Finally, we compute kernel densities that allow us to generate K =

100, 000 density points for 100, 000 quantiles of each distribution. The constructed

wage distributions give us the minimal and maximal values of annual wages: in

the United States the minimal (maximal) wage is equal to 5, 760 USD (204, 920

USD), whereas in Mexico it equals 1, 230 USD (42, 770 USD).

Several data inputs are required to calibrate the trade module. First, we ex-

ploit the international trade data from TiVA database by OECD and we compute

bilateral trade costs. Second, the price indexes in Mexico and US are normalized

to unity, as all monetary values (including wages in Mexico) are expressed in PPP

USD. Third, the price index in the ROW is determined by the trade-weighted

purchasing power parity (PPP) differentials with the United States, resulting in

PW = 0.685 · PU . We also take YW = 4 · YU based on the OECD quotes of GDPs.
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Finally, we compute the conditional probabilities of emigration across

Mexican wages (the probability of being classified in a particular quantile of the

Mexican stayers’ wage distribution conditional on migrating). We use the Mexican

Migration Project (MMP), which collects the information on wages of Mexican

immigrants to the United States. Our observations include those individuals who

migrated between 2009 and 2013. We eploit their Mexican wage rates before

moving, and compute their frequency in eleven quantiles of Mexican stayers’ wage

distribution: q ∈ {0.05, 0.1, 0.2, ..., 0.9, 0.95}. These probabilities, which formally

take the form of ∂C(ψ(G−1
M (x)), G−1

M (x))/∂xM , reflect migrants’ self-selection.

Table C.1: Empirical Moments for Model Calibration

Object Name Symbol Value US Value MEX Source Group

Demographics

Total Population RWi 2.850 1.000 DIOC (A)

Working Population Sii(0) 2.688 0.827 ” (A)

Structure of GDP

Wage Share wsharei 0.56 0.52 OECD & FRED (B)

Profit Share πsharei 0.27 0.305 ” (A)

Capital Investment Share: cisharei 0.17 0.175 ” (A)

Firms

Fixed Production Costs cfi 5, 062 1, 584 imp. (B)

Potential Firms RFi 3.150 0.990 DIOC & BoLS (A)

Labor Market

Unemployment Rate ui 5.75% 3.45% DIOC & LFS (A)

Minimal Wage wci $5, 760 $1, 230 IPUMS (B)

Maximal Wage wmi $204, 920 $42, 770 ” (A), (B)∗

Object Name Symbol Value Source Group

Migration, Trade, and the Rest of World

Migration from MEX to US SUM (0) 0.138 DIOC (B)

Goods’ Elasticity of Substitution ε 7 literature (A)

Price Index, ROW PW 0.69 · PU WITS & WDI (A)

Gross Domestic Product, ROW YW 4 · YU TiVA (A)

Bilateral Trade Matrix Yij - ” (A)

Wage Distributions

Wage Distribution U.S. Residents wUU (·) - IPUMS (B)

Wage Distribution MEX Immigrants wUM (·) - ” (B)

Wage Distribution MEX Residents wMM (·) - IPUMSint (B)

Copula

Conditional Probability of Migration P (·) - MMP (B)

Notes: imp.= imputation; DIOC = Database on Immigrants in OECD and non-OECD Countries
by the OECD; BoLS = Bureau of Labor Statistics by U.S. Dep. of Labor; U.S. census = U.S.
census Bureau; FRED = The Federal Reserve Bank of St. Louis; MES = Mexico Enterprise
Survey by the World Bank; LFS = Labor Force Survey by Eurostat; IPUMS and IPUMSint by
Institute for Social Research and Data Innovation; WITS = World Integrated Trade Solutions
by the World Bank; WDI = World Development Indicators by the World Bank; TiVA = Trade
in Value Added by the OECD; MMP = Mexican Migration Project by Princeton University.
∗Maximal wage in the US is taken as given, while the maximal wage in Mexico is fitted.
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Identification As discussed in the main text, our model requires an identifica-

tion of nine unknown parameters. Our identification strategy relies on matching

five discrete empirical moments, a set of conditional emigration probabilities from

Mexico and two distributions (100,000 quantiles for each one), which means that

a hypothetical parameter vector that achieves no loss would need to satisfy a

system of 200,019 equations. While in our calibration procedure all of these equa-

tions matter, the first 19 (spelled out fully in (C.I1)–(C.I9)), would, on their own,

identify the model’s parameters. And indeed, in our Monte-Carlo calibration pro-

cedure, we find very close relations between the moments from the data featured

in these 19 equations and parameters Ξ = {kU , sU , γU , kM , sM , γM , θ, δUM ,∆UM},
for i ∈ {U,M}: ki, si, γi, θ,∆UM > 0; δUM ∈ R, as depicted in Figure C.1 and

summarized in Table C.2. Some parameters are precisely identified by respective

model equations and data moments, other emerge as a solution to a subsystem of

simultaneous equations.

e−∆UM (ŵcU/PU − δUM) = ŵcM/PM , (C.I1)

e−∆UM (ŵmaxU /PU − δUM) = ŵmaxM /PM , (C.I2)

rU (xcU , h
c
U ; kU , sU , γU) = ŵcU + PU ĉ

f
U , (C.I3)

rM (xcM , h
c
M ; kM , sM , γM) = ŵcM + PM ĉ

f
M , (C.I4)

ŵmaxM − ŵcM =

∫ 1

xcM

∂/∂xMrM (r,mM(r); kM , sM , γM) dr, (C.I5)

ŜUM(xcUM) =

∫ 1

xcUM

∂/∂xUC (r, φ(r)) dr, (C.I6)[
−
∫ 1

xcU

wU(r)dSU(r)

]
·
[
RF
U

∫ 1

0

πU(r)dr

]−1

= ŵshareU /π̂shareU , (C.I7)[
−
∫ 1

xcM

wM(r)dSM(r)

]
·
[
RF
M

∫ 1

0

πM(r)dr

]−1

= ŵshareM /π̂shareM , (C.I8)

∑
x∈{0,0.1,...,1}

(
∂/∂xMC(ψ(G−1

M (x)), G−1
M (x))− P̂ (x)

)2

→ 0. (C.I9)

As in every selection model, migration costs, ∆UM and δUM define the shape

(the skewness) of Mexicans’ wage distributions in Mexico and in the United States.

By construction, in our model, these variables also determine the minimal (max-

imal) wages received by Mexicans in Mexico (in the United States). Equations

(C.I1) and (C.I2) are jointly solved by ∆UM and δUM for given values of mini-

mal and maximal wages received by Mexicans in Mexico and the United States.
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These two parameters determine the relative positioning of distributions of wages

for Mexican stayers and emigrants and are identified by the extremes of wage

distributions, as the no-arbitrage migration equation has to be fulfilled for the

least and the most skilled Mexican worker. There exists a close relation between

the multiplicative (additive) migration cost and the maximal (minimal) calibrated

wage attainable in Mexico (the United States), as summarized in Table C.2 and

depicted in Figure C.1, graphs 8 and 9. However, we do not want to make our

calibration strategy vulnerable to and dependent on subjective choices of wage

distributions’ cut-offs (imposed to keep our model Lipschitz continuous). There-

fore, even though we retain the minimal and maximal wages in both countries as

targeted empirical moments in the loss function, we assign a relatively low weight

to these conditions and do not fit them exactly.

Table C.2: Identification of Model Objects

Object Name Parameter Moment Calibration Data Equation

Multiplicative Factors kU ĉfU 4,977.1 4,977.5 (C.I3)

in Production Function kM ĉfM 1,810.5 1,810.9 (C.I4)

Spreads of Mapping between sU ŜUM (0) 0.1387 0.1387 (C.I6)

Skills and Output sM ŵcM 1,912.4 799.5 (C.I5)

Spreads of Mapping between γU ŵshareU 0.560 0.560 (C.I7)

Productivity and Output γM ŵshareM 0.524 0.520 (C.I8)

Utility Costs of Migration ∆UM ŵmM 65,600.8 42,770 (C.I2)

Monetary Costs of Migration δUM ŵcU 4,934.3 5,760.3 (C.I1)

Correlation between Skills θ P̂ (·) distance: 0.131 (C.I9)

Distribution of Skills in
F (·) ŵUU (·) forced perfect fit

-

U.S. Resident Population

The set of equations (C.I3)-(C.I6) jointly determines the production function

parameters in both countries: kU , sU , kM , sM , for given values of γU , γM . Since

these four parameters affect not only country-specific moments (fixed costs and

the dispersion of wage distributions) but also influence the location of the sepa-

ration function, they cannot be individually determined. Equations (C.I3)-(C.I4)

indicate that for a given fixed costs cfi and minimal wages wci , there exist a combi-

nation of ki, si for i ∈ {U,M} that imposes that the gross surplus produced by the

worst match in economy i yields exactly the sum of minimal wage and the fixed
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Figure C.1: Identification of Model Parameters

Figure C.1 shows the results of Monte Carlo calibrations for 9 fitted parameters and respective
empirical moments matched (for the mapping between parameters and moments see Table C.2).
Horizontal axes represent values of respective parameters, while vertical axes depict differences
between observed and model values of matched moments (exceptions are top-left figure, in
which we plot the value of loss function, and top-middle figure, in which we plot values of kU
parameters). Gray points illustrate outcomes of 800 Monte Carlo calibrations, whereas the black
square indicates the best calibration.

production cost (zero profit at the cutoff). Equations (C.I5)-(C.I6) determine the

spread of Mexican wage distribution and the total mass of Mexican migrants in

the United States, respectively. Note that equation (C.I5) has no counterpart in

the U.S. economy. The spread of U.S. residents’ wages gives only the range of

admissible pairs of kU , sU , not the actual values of these two parameters, because

the distribution of wage in the population of U.S. residents is exploited to com-
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pute the U.S. skill distribution, F (·), using all degrees of freedom. In this way,

one must find another source of identification of kU and sU . In our case, this

job is done by the equation that characterizes the mass of Mexican immigrants,

which depends on the separation function φ(·), which in turn relates on production

functions in both countries.16 Even though Figure C.1 reveals a close relationship

between these four parameters and particular moments, one has to bear in mind

that kU , sU , kM , sM are a solution to a system of four simultaneous equation rather

than an explicit one-to-one identification.

Equations (C.I7)-(C.I8) determine the ratios of aggregated wage bills to total

profits earned by firms in both economies. Therefore, they directly relate to the

moments that describe the structure of GDPs discussed in Table C.1. For given

parameters ki, si, these two equations determine the magnitudes of γi in both

countries, as they control the bargaining power of firms in the process of sharing

the surplus with workers.17

Finally, equation (C.I9) allows us to select the value of copula parameter θ

that yields the closest fit to empirically observable conditional probabilities of em-

igration, P (·), along the distribution of Mexican wages, computed using the MMP

data. Our model is over-identified, as long as we fit continuous distributions with

parametric approximations. Heckman and Honoré (1990) prove that 3 moments

per country wage distribution suffice to fully identify the log-normal self-selection

model by Roy (1951).

Solution of the model For a given vector of parameter guesses (denoted by

Ξ), the solution algorithm starts with exploiting the distribution of U.S. citizens’

wages – the only one that is not affected by the selection mechanism. Using

Equation (5), we arrive at the following differential equation:

∂wU(xU)

∂xU
=

∂

∂xU
ŵU(F (xU))↔ ∂

∂xU
rU(xU , hU(xU)) = ŵ′U(F (xU))F ′(xU), (C.1)

16This module is close to what has been discussed regarding identification of the self-selection
model by Roy (1951) in the paper by Heckman and Honoré (1990). Parameters ki relate to the

location of the wage distributions, as they are identified by the fixed costs, cfi . Then, parameters
si determine the dispersion of wage distributions, while migration costs determine the skewness
of the two wage distributions, as in all self-selection models.

17This part of the identification strategy significantly differs from a standard self-selection
model of Roy (1951), as in the latter there are no firms (or equivalently: all firms are homoge-
neous), which corresponds to a situation in which γi →∞. It is instructive to say that positive
values of γi are the artifacts of our model that differentiate our approach from the classical
self-selection model, and bring us closer to better understanding the importance of matching in
real world labor markets.
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where the left hand side function is the derivative of the surplus with respect to

its first argument (skill ranking xU), while the right hand side function is the

observed inverse distribution of wages ŵU(·) being a function of the distribution

of U.S. skills F (·), multiplied by the density of skills supplied by U.S. residents:

F ′(xU). Equation (C.1) is the first equation in the system of two differential

equations, and is solved with an initial condition: ŵU(1) = wU(1). The solution

is discretized on the assumed grid, and computed using the Euler method.18

The second step is to reveal the underlying selection mechanism induced by a

tuple: {Ξ, F (·)}. We therefore proceed with exhausting the migration condition

(18), and taking its first derivative:

∂

∂xU
w̄M(φ(xU)) = e−∆UM

∂

∂xU
w̄U(xU)↔

∂

∂xU
rM(φ(xU), hM(φ(xU)))φ(xU)′ =

PM
PU

e−∆UM
∂

∂xU
rU(xU , hU(xU)). (C.2)

The latter serves as the second equation in the two-dimensional system, solved

simultaneously with Equation (C.1), using the Euler method on the assumed grid,

and taking the initial condition: φ(1) = 1.19 For the given solution for selection

pattern, determined by the separation function φ(·), the mass of Mexican immi-

grants in the United States can be computed by using Equation (19), discretized

in the following way:

SUM(xU − dxU) = SUM(xU) + dxU∂C(xU , φ(xU))/∂xU , (C.3)

for all skills xU ranging from 1 down to xcUM , with step dxU = 1/K. The starting

point requires that: SUM(1) = 0.

At this stage, we can use the Euler discretization of country-specific Equations

(5) to determine the wage distributions of Mexican workers in the United States

and in Mexico. The final result of the calibration for a given guess of parameter

values Ξ is a set of three wage distributions: U.S. residents, wU ≡ (wU(xU), F (xU)),

Mexican immigrants in the United States, wUM ≡ (wU(xU), FUM(xU)), and Mex-

18Euler method is the simplest numerical way to solve an ordinary differential equation (ODE)
with a given initial condition. For a given ODE: y′(x) = f(x), y(1) = f(1), and a given series of
grid points: {x(1), ..., x(K)}, one computes the values of y by setting: y(x(t)) = y(x(t − 1)) +
(x(t)− x(t− 1))f(x(t− 1)).

19Our model approximates the model with unbounded, log-normally distributed skills, in which
φ(1) = 1 (this means that ∀xU ≤ 1∃xM : (xU , xM ) stays in Mexico). Thus, setting φ(1) = 1
amounts to imposing a condition that, in this dimension at least, we consider only specifications
that retain this important feature of the model with (untruncated) log-normal skills.
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ican stayers, wM ≡ (wM(xM), FM(xM)).20

Calibration algorithm Our goal in the calibration procedure is to find such a

vector of parameters Ξ that gives the best possible fit of wU , wUM and wM to the

observed distributions ŵU , ŵUM and ŵM , along with fitting crucial moments in

the data. The solution of the model requires finding functions and distributions,

for which there exists no analytical solution, therefore to calibrate the model we

cannot escape solving it for each guess of parameters Ξ.

The calibration procedure assumes a search through a dim Ξ = 9 dimensional

space of parameters, and each vector requires a full solution of the model on the

defined grid. To maximize the performance of such a computationally-intensive

search, we propose a version of a basing-hopping algorithm, enriched with a Monte

Carlo search procedure, with a given goal function.21 Our implementation of

the random search through the parameter space is in principle a variant of the

Simulated Annealing Optimization method.

Each vector Ξ is evaluated using a subjective goal function:22

ζ(Ξ) = p1|cfU − ĉ
f
U |+ p2|cfM − ĉ

f
M |+ p3|wminM − ŵminM |+ p4|wmaxM − ŵmaxM |

+ p5|wminUM − ŵminUM |+ p6|wshareU − ŵshareU |+ p7|wshareM − ŵshareM |

+ p8e(P − P̂ ) + p9|SUM(0)− ŜUM(0)|

+ p10e(wU) + p11e(wUM) + p12e(wM),

(C.4)

where e(·) is an error function that computes the squared difference between an

object from the model and its empirical counterparty in the data, and p’s are

subjective weights.23 The P (·) function computes the conditional probabilities of

emigration from Mexico (see Equation C.I9), while functions wi(·) represent the

20The proposed notation includes skill CDFs in the analyzed groups of workers. FUM (xU ) =
(SUM (xcUM )− SUM (xU )) /SUM (xcUM ), while: FM (xM ) = (SM (xcM )− SM (xM )) /SM (xcM ).

21Standard, one-dimensional selection models can be calibrated using a Maximum Likelihood
Estimation (MLE). In the case of our model this is not feasible because the selection patterns
cannot be solved for analytically. This means that we are unable to obtain closed form solutions
for the distributions of wages, which makes it impossible to use a standard MLE algorithm.
Instead, we set the model parameters to match the full distributions of the three groups of
workers that we observe. This method is computationally less demanding, but arrives at a
similar outcome: a MLE of Ξ would aim at equalizing the model distribution of wages to the
observed ones, so that the probability of selecting an individual from a given wage distribution
(that is an ordered pair of wage rate and ranking) is maximized.

22p1 = p2 = 100, p3 = p4 = p5 = 1, p6 = p7 = 5 · 105, p8 = 104, p9 = 4 · 105, p10 = 50, p11 =
3, p12 = 2.

23For P (·) the function e(·) returns the Euclidean distance between model vector of probabil-
ities and data. For distributions, for every grid point we compute Euclidean distances between
quantiles of data and model distributions.
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group-specific distributions of wages. The goal function aims at minimizing: (i)

the distance between eight model variables and corresponding moments in the data

(multiplied by weights: p1, ..., p8); (ii) the absolute difference between the number

of Mexican migrants in the United States from the model and from the data

(weighted by p9) and the distances between model and data wage distributions in

three populations (weighted by p10, ..., p12).

The proposed Monte Carlo search method assumes the following procedure:

1. Select a randomly drawn guess of parameters Ξ0.

2. If ζ(Ξ0) < threshold continue; else go to step 1.

3. Search for a new vector of parameters in a close neighborhood of the current

vector of parameters: Ξ1 : e(Ξ0,Ξ1) < ε(ζ(Ξ0)), where the imposed distance

is a function of the current “goodness of fit” of the model.

4. If ζ(Ξ1) < ζ(Ξ0) then Ξ0 ← Ξ1 and go to step 3.

5. If no better vector Ξ1 found after a given number of replications, return the

best fitting vector Ξ0 and go to step 1.

The algorithm settled on the vector of parameters indicated in Table C.3. For

a graphical analysis of the loss function minimum achieved by the best param-

eter vector consult Figure C.2, where we disturb the best vector of parameters

(deviation of which is normalized to zero in the figures) with small positive and

negative deviations. Location (ki) and spread (si) of the skill-component in the

U.S.-based surplus function take higher values than their counterparts in Mexico.

The former is driven by a significant first-order stochastic dominance of the wage

distribution of Mexican emmigrants relative to Mexican stayers, while the latter

indicates a higher dispersion in skills pricing on the American market comparing

to Mexico. Then, firms’ component in surplus appears to be almost identical in

the United States and in Mexico. Interestingly enough, our best calibration re-

turns a rather low value of the copula parameter θ. Its value close to 1 indicates

that U.S. and Mexican skills are weakly related with an average rank correlation

of 0.33. Migration costs take values in expected ranges: the multiplicative one

equals 1−∆UM = 68% of migrant’s wage in the United States, while the additive

one is δUM = 338 USD. Trade costs, reported in Table C.4, take values ranging

between 1 and 2.1, they are solely determined by the bilateral trade matrix for a

given combination of price indexes, aggregated productions and the elasticity of

substitution between product varieties.
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Figure C.2: Evaluation of the Best Parameter Vector

Figure C.2 presents the values of loss function ζ(Ξ), Eq. (C.4) in the neighborhood of the
best parameter vector. Four panels represent one-dimensional marginal values with respect
to 9 calibrated parameters: kU , kM , sU , sM , γU , γM ,∆MU , δMU , θ. Horizontal axes represent
deviations in the value of respective parameters (calibrated value normalized to 0), while vertical
axes depict values of loss function (minimized value normalized to 1).

Table C.3: Calibrated values of parameters

US Market MEX Market Migration Parameters

kU = 12, 457.9 kM = 7, 529.1 θ = 0.990

sU = 0.849 sM = 0.462 δUM = 338.2

γU = 0.354 γM = 0.356 ∆UM = 0.319
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Table C.4: Calibrated trade costs

To:\From: ROW MEX US

ROW 1.00 1.82 1.14

MEX 1.96 1.00 1.39

US 1.99 2.09 1.00

Backward Recalibration Our calibration strategy considers a single, cross-

sectional snapshot of U.S. and Mexican economies, by fitting nine model parame-

ters to eight discrete moments and a set of conditional probabilities of emigration.

This might raise concerns that (i) the calibrated parameters are unstable over

time and (ii) that there is no natural external validation of our calibration. To

dispel these worries, we investigate the fit of our 2015 model to 2010 data on

labor markets, wages and migration. First, we argue that parameters that repre-

sent production technology and prices for skills (sU , sM , γU , γM) are held constant

throughout the course of five years. This assumption is motivated by the fact

that the standard deviations of wage distributions are almost identical across the

two waves, so as the share of firms’ profits in GDP. Second, we recalibrate the

model using only five model parameters (kU , kM , δUM ,∆UM , θ), and show that we

are able to fit the 2010 data with a reduced set of parameters. The outcomes of

the calibration are depicted in Figure C.3.
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Figure C.3: Model Fit to 2010 data

We observe only slight changes in the values of recalibrated parameters. The

multiplicative constant in production function represents total factor productivi-

ties in both countries, changes by -11% in the United States and remains roughly

identical in Mexico. The utility costs of migration are lower in 2010 by 4 percent-
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age point (of the wage lost when migrating), while monetary costs of migration

are larger by approximately 100 USD in 2010. Recall that the Deferred Action

for Childhood Arrivals (DACA) legislation was already active in 2015, but not

present in 2010, which might explain these differences. Finally, the copula pa-

rameter equals 1.2 in 2010, which implies a small increase in the skill correlation

among Mexicans by 4 percentage points.

Simulation algorithm In counterfactual simulations we manipulate the values

of additive (and multiplicative) migration costs. We solve for the new equilibrium,

keeping the set of parameters: {ki, γi, si} for i ∈ {U,M} and θ constant. δUM (and

∆UM) change, while the remaining variables and functions in the model become

endogenous.

The algorithm solves for the new equilibrium following a sequential computa-

tion procedure. Taking a first guess on the total number of Mexican migrants to

the US, SUM(0), it recomputes the skill and wage distributions, for the new migra-

tion costs. Then, separately for each economy, the procedure computes the mass

of firms by setting expected profits equl to the fixed costs of entry. These steps al-

low to obtain country-specific labor market equilibria. Finally, the trade matrix is

updated, price indexes are recomputed and new guess on the counterfactual num-

ber of Mexicans in the United States can be produced. This iterative procedure is

continued as long as the aggregated deviation in all endogenous variables in con-

secutive steps is smaller than 1/K. In Figure C.4, we present deviations in values

of GDPs after recomputing the labor market equilibrium for (non-)equilibrium

initial values of GDPs. Only one point (the actual equilibrium) is mapped on

itself; other starting points map to different points with positive distance from the

initial ones. This indicates that the two-market general equilibrium necessarily

has a unique solution (in a fairly large neighborhood of the initial equilibrium)

which can be computed using an iterative procedure (first solve labor market, than

solve international goods market, repeat until convergence).

D Additional Results

We verify the robustness of our main results by performing several additional sim-

ulations, including alternative parameter values (for the market size effect and the

structure of costs), and functional forms of the distribution of inactive individuals.
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Figure C.4: Uniqueness of Model’s General Equilibrium
Figure C.4 illustrates the numerical proof of uniqueness of the model’s general equilibrium.
The “xx” (“yy”) axis represents initial deviations in Mexican (U.S.) GDP, while the vertical
axis depict logarithms of Euclidean distances between initial and computed vectors of GDPs.
General equilibrium GDP levels are normalized to 1.

Fiscal Effects Mexican migrants in the United States tend to locate in the

left tail of wage distributions, consequently they are expected to have a net fiscal

contribution different from the one of U.S. or Mexican residents. To quantify

the extent to which the U.S. and Mexican fiscal balances change due to Mexican

immigration, we add to our model the fiscal extension.24 Double-dashed black

lines in Figure D.1a illustrate that due to Mexican immigration, U.S. residents

are forced to pay 94 USD of the budget-balancing lump-sum tax, while Mexican

stayers benefit from a 46 USD lump-sum transfer (note that the solid light gray

lines recall the benchmark results from Figure 3). Despite being quantitatively

small, the change in net benefits received by incumbent residents sets the share

of winners and losers to approximately 40:60 in the United States and 60:40 in

Mexico.

24Specifically, we calculate how much the budget deficit in country i would change in response
to Mexican immigration, and then redistribute this difference across all workers in country i.
This is an out-of-equilibrium exercise, since in our model Mexican workers only take gross wages
into account when making their migration decision, but it nevertheless provides an indication
about the order of magnitudes. Regarding the data, we collect income and corporate tax rates
and thresholds for the United States and Mexico from the OECD. Finally, we assume balanced
governmental budgets, and choose that the lump-sum transfers adjust after shocking the econ-
omy.
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Illegal Mexican Immigration Illegal migration from Mexico to the United

States proves to be one of the key points in the overall discussion about American

migration policy. To analyze its economic importance, we include estimates of the

number of undocumented Mexicans and their wage distribution in our quantifi-

cations.25 The quantitative outcomes of including illegal Mexican immigrants in

the no-migration scenario are depicted in Figure D.1a with long-dashed gray lines.

The magnitudes of the economic impacts become significantly more pronounced

(especially for the low-skilled U.S. residents), while the measures of losers and

winners stay virtually unchanged.

Alternative distributions of inactive individuals’ skills Any shock to the

supply of skills in the United States affects workers’ participation. More precisely,

the presence of Mexicans discourages some previously employed Americans to quit

the labor market. Importantly, we do not observe the wages (nor the skills) of

these inactive individuals; thus, we can only speculate about the distribution of

their skills. In the benchmark, we assume that the skills of out-of-the-market

individuals are distributed uniformly. In what follows, we verify this by taking

exponential (strictly convex) and logarithmic (strictly concave) CDFs. Both have

a negligible impact on the wage effect, as depicted in Figure D.1b.

Modifying the market size effect The literature provides numerous esti-

mates of the elasticity of trade flows with respect to trade costs (equivalent to the

elasticity of substitution between varieties, ε, in our model). The various model

specifications and datasets used, however, allow us to formulate a convergent view

on the magnitude of this particular variable. In the Melitz (2003) trade model

with heterogeneous firms, Simonovska and Waugh (2014b) indicate that the 80%

confidence interval is [4.1, 6.2]. Melitz and Redding (2015) use ε = 4 in their

simulations. In the framework developed by Eaton and Kortum (2002), this elas-

ticity is found to be in the range of [3.8, 5.2] according to Bernard et al. (2003);

Donaldson (2018); Burstein and Vogel (2010); Eaton et al. (2011); Parro (2013);

Simonovska and Waugh (2014a); Caliendo and Parro (2015), although Eaton and

25We take the number of undocumented Mexicans from the Pew Research Center. The authors
calculate that out of 11.7 million Mexican immigrants in the United States in 2014, there were
approximately 5.8 million illegals. Our data consider 7 million working-age migrants (according
to the crude estimates, one-third/one-fourth of illegals are included in the U.S. Census); thus, in
this simulation we increase the number of Mexicans in the US to 10.5 million. Illegal migrants
earn substantially lower wages than their legal peers. Caponi and Plesca (2014) compute the wage
penalty for illegals along the wage distribution (see their Figure 1), which equals approximately
15-20%, in line with the findings of Massey and Gentsch (2014).
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(a) Illegal Migration and Fiscal Effects
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(b) Alternative Inactive Workers’ Skill Levels
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(c) Magnitude of the Market Size Effect
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(d) Changes in Capital Costs Structure

Figure D.1: Robustness Checks

Note: Figure D.1 illustrates the economic effects of Mexican migration to the United States, with alternative
assumptions about the structure of the model. Figure D.1a includes illegal immigrants (gray dashed line) and
fiscal effects (black double-dashed line). Figure D.1b experiments with the distribution of skills of inactive
workers. The reference scenario (solid gray) assumes a linear CDF, the “convex scenario” (long-dashed dark
gray) assumes exponential CDF, while the “concave scenario” (double-dashed black) assumes logarithmic CDF.
Figure D.1b assumes alternative values for the elasticity of substitution between varieties (solid gray benchmark:
ε = 7, double-dashed black: ε = 5, long-dashed dark gray: ε = 9). Figure D.1c assumes alternative structure of
capital and investment costs (solid gray benchmark: fixed costs constitute 35% of capital costs, double-dashed
black: 0%, long-dashed gray: 100%).
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Kortum (2002) estimate it at the level of 8. Therefore, we verify the consequences

of alternative estimates of ε for our main results. Figure D.1c summarizes the

main results assuming different magnitudes of the market size effect. The solid

gray line indicates the reference value of ε = 7; with the dark-gray line, we assume

ε = 9; and the black line imposes ε = 5. Higher elasticities (lower market size

effects) move the welfare effects very slightly downward. A stronger market size

effect has a significantly positive impact on the gains from inviting immigrants,

which increases the mass of winners to 100%.

Changing the structure of capital costs One degree of freedom in the

calibration process is subject to a broad interpretation of the underlying data.

This problem concerns the division between variable and fixed costs of capital,

that are necessary to pin down production costs. In the benchmark calibration, we

assume that the consumption of fixed capital that relates to structures constitutes

the fixed part of capital costs, while equipment and intellectual property costs are

ascribed to its variable part. In this robustness check, depicted in Figure D.1d, we

verify the results of our migration scenario in two extreme cases of 100% of capital

consumption being related to the fixed (variable) costs of production, illustrated

by the dark-gray (black) line. Higher fixed share of capital costs twists the gain

distribution clockwise, while higher variable share of costs inflates the magnitudes

of extreme effects, but keeps the indifferent individual at around 40th percentile,

close to our benchmark result.

Applying redistribution among U.S. citizens Below, we complement the

findings of Section 5.2 by deriving the tax rates imposed on all U.S. citizens that

finance a lump-sum transfers designed to keep the variance of U.S. citizens wage

distribution constant between the reference and the counterfactual scenarios. Note

that this redistribution policy does not affect average wages among U.S. citizens.

Figure D.2 depicts the outcomes with the long-dashed gray (solid black) line in-

dicating the case of labor market effects (labor market and market size effects).

The induced tax rates are almost linear in migration cost liberalizations. In order

to maintain the variance of U.S. citizens wage distributions constant, every 100

USD reduction of visa costs should be followed by an increase in proportional in-

come taxes by 0.027 percentage points. The respective number for the full general

equilibrium model is 0.02.
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Figure D.2: Redistribution Among U.S. Citizens: Variance-Preserving Tax Rates

Note: Figure D.2 plots the tax rates that compensate for the change in wage inequality generated
by more liberal Mexico-US immigration policies. The long-dashed gray line (the solid black line)
represents labor market effects (labor and market size effects). Horizontal axes present deviations
in monetary costs of migration, δUM , relative to the status quo

E Canonical CES model

Reference to the canonical model of labor market and multiple-bins

CES model In the introduction we have explained that the standard way of

modeling the labor market in the migration literature involves the use of a constant

elasticity of substitution (CES) production function, and that this method of

modeling the labor market allows for endogenous migration choices only under

the (restrictive) assumption that skills are perfectly correlated across countries.26

In this section, we perform a comparison of labor market effects generated by our

model with two fundamental state-of-the-art models of labor markets: the “the

canonical CES model” of labor markets by Acemoglu and Autor (2011) and the

“multiple-bins CES model” by Dustmann et al. (2013). Before discussing our

results, let us first sketch the two theories to which we relate.

The labor market analyzed by Acemoglu and Autor (2011) is a k-skill extension

of the standard two-skill CES model, in which the number of efficiency units of

skill k among workers from origin o is continuously distributed according to an

exogenously given distribution Lok. The aggregated production function can be

expressed as a nested CES function (with the first tear referring to education, and

26That is, that a Mexican with a university degree would necessarily work in the US in a job
that requires a university degree.
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the second to origin):

Y =

[∑
k∈K

αkL
σ−1
σ

k

] σ
σ−1

, Lk =
[
αNk (LNk )

σm−1
σm + αMk (LMk )

σm−1
σm

] σm
σm−1

. (E.1)

The total number of efficiency units supplied by a particular skill-origin cell equals

Lok =
∫
ldLok(l), while σ and σm stand for constant elasticities of substitution

between inputs of different sort of skill/origin, respectively. The wage rate of any

individual i ∈ Lok equals: wi = wokli, where wok is the remuneration of a unit of skill

k supplied by members of the origin group o ∈ {N,M}. Knowing the distribution

of the efficiency units supplied, it is straightforward to compute the distribution of

wage effects in the population of U.S. workers generated by removing all Mexicans

workers from the U.S. economy. The downside of this approach consists in keeping

the distributions of efficiency units constant. Therefore, the overall economic

effects of migration can be computed as a linear combination of direct effects on k

discrete groups weighted by exogenously given distribution of k types of efficiency

units along the distribution of wages.

In the model developed in Dustmann et al. (2013) the production process takes

place using labor and capital (as we consider only the long-term effects, we assume

capital fully adjusts). Individuals are categorized into K groups according to their

location in the wage distribution (migrants and natives being perfect substitutes

within the so-defined skill group). We define:

Y =
(
βH

s−1
s + (1− β)C

s−1
s

) s
s−1

, H =

(∑
K∈K

αK(lK)
σ−1
σ

) σ
σ−1

. (E.2)

Assume that the size of group K equals the sum of native U.S. workers and immi-

grants Mexican workers that earn the same wage rate: lK = lNK + lMK . While the

allocation of workers in Acemoglu and Autor (2011) was done according to their

observable characteristics (i.e. education level), in Dustmann et al. (2013) workers

are classified into discrete groups according to their location in the observed wage

distribution. In this way, the wage effects induced by immigrants are, as summa-

rized by Dustmann et al. (2013), dependent upon their relative density along the

distribution of wages.

Figure E.1 compares the economic effects for U.S. citizens of exogenous re-

movals of different cohorts of Mexican migrants from the U.S. labor market. Black

lines relate to the labor market effects generated by our model, the red lines depict

the wage effects produced by a K = 4 group CES model in the vein of Acemoglu

36



and Autor (2011), whereas the blue lines present the wage effects assuming the

CES model by Dustmann et al. (2013) with K = 100 groups of workers.27 Our re-

sults resemble the outcomes from Acemoglu and Autor (2011) model as long as the

imposed migration shock does not create too big of a composition effect, and the

similarity is closest if only the size effect is present. This means that the changes

in migration that our model produces (endogenously) in reaction to changes in

migration cost δUM would create similar labor market effects in the Acemoglu and

Autor (2011) model. Thus, remarkably, our framework allows for an endogeniza-

tion of migration choices under realistic assumptions about skill interdependence,

while also producing labor market effects consistent with those produced by the

canonical model of the labor market. However, if the composition effect is strong

(for example, if we remove 1% and 10% of top skilled Mexicans), the labor market

effects implied by these two models diverge, because in that case the model by

Acemoglu and Autor (2011) predicts almost no redistribution across workers: The

exogenous weights on the distributions of efficient skills make the heterogeneous

effects on 4 discrete skill groups cancel out along the distribution, which is visi-

ble in the second row of figures in its extreme case. Thus, wage-constrained visa

policies (Section 5.3) could produce very different distributive effects in our model

and in the Acemoglu and Autor (2011) model.

The percentile-bins CES model by Dustmann et al. (2013) produces size effects

similar to those in our model, but drastically different composition effects. The

reason is that the percentile-bins CES model generates positive wage effects for

the group which is hit by the negative supply shock, and uniform and negative

effects for all other quantiles of wage distribution (as all percentiles are identically

substitutable in the production function). The magnitudes of these effects are also

significantly higher (as measured on the right-hand-side axes). Thus, the changes

produced by our model in reaction to changes in migration cost δUM would likely

produce noticeably different labor market effects in the percentile-bins CES model.

Having considered these results, it is vital to highlight fundamental differences

between the assignment and CES models. First, the assignment model exhibits

distance-dependent elasticity of substitution (DIDES), as in Teulings (1995, 2005);

Costrell and Loury (2004), that is, workers with similar skills are more likely to

be substitutes than workers with very different skills. Second, the elasticity of

substitution is endogenous along the wage distribution and depends on the whole

27Four groups of workers in the implemented Acemoglu and Autor (2011) framework relate to
the following education groups: high school dropouts, high school degree, some college education,
completed college degree. 100 groups in the implementation of Dustmann et al. (2013) model
assume percentiles of observed wage distribution in the U.S.
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distributions of skills supplied and firms’ productivities. This property is in sharp

contrast with classical CES models, which assume a constant elasticity of sub-

stitution, in which case the structure of labor market interactions is fixed along

the distribution of wages as in Acemoglu and Autor (2011) or is symmetric across

wage quantiles as in Dustmann et al. (2013). Second, as workers are preassigned

to discrete groups in the CES model in which they are perfect substitutes (classi-

fication being done according to their education level or their placement in wage

distribution in the baseline), there is no room for heterogeneous effects of mi-

gration within these broadly defined groups. Moreover, a skill-specific migration

shock cannot induce workers’ mobility along the wage distribution, which is the

main constraint of the multiple-bins CES model articulated by Dustmann et al.

(2013). In contrast, our model allows for rematching between incumbent workers

and firms after any shock to the supply of labor. This, in turn, induces hetero-

geneous welfare effects along the distribution of wages. Our approach explicitly

accounts for natives’ mobility along the distribution of wages induced by an in-

flow/outflow of migrants, similar to the mechanism discussed by Peri and Sparber

(2009) and Foged and Peri (2016).
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Figure E.1: Labor Market Effects in the Matching and CES models

Figure E.1 presents the quantifications of labor market effects for U.S. residents from exogenous
immigration shocks generated by: the selection and matching model of this paper (black solid
curves), the canonical model of labor markets by Acemoglu and Autor (2011) (red long-dashed
line) and the multi-bins CES model by Dustmann et al. (2013) (blue two-dashed line). The
magnitude of the effects generated by the last model are summarized in the right-hand-side axes.
The first (second) row of figures assumes removing 1%, 10% and 50% of the lowest (highest)
earning Mexican immigrants in the United States, while the third row depicts the outcomes of
a random deletion of 5%, 51% and 100% of Mexican migrants in the United States. All effects
are depicted as outcomes of removing Mexican immigrants from the U.S. economy, expressed in
percentage points, with horizontal axes represent quantiles of U.S. residents wage distribution.

References

Acemoglu, D. and Autor, D. (2011). Skills, Tasks and Technologies: Implications
for Employment and Earnings. In Handbook of Labor Economics, volume 4,
pages 1043–1171. Elsevier.

Athey, S. (2002). Monotone Comparative Statics under Uncertainty. The Quar-
terly Journal of Economics, 117(1):187–223.

Berge, C. (1963). Topological Spaces. Macmillan.
Bernard, A. B., Eaton, J., Jensen, J. B., and Kortum, S. (2003). Plants and

Productivity in International Trade. American Economic Review, 93(4):1268–
1290.

39



Burstein, A. and Vogel, J. (2010). Globalization, Technology, and the Skill Pre-
mium: A Quantitative Analysis.

Caliendo, L. and Parro, F. (2015). Estimates of the Trade and Welfare Effects of
NAFTA. The Review of Economic Studies, 82(1):1–44.

Caponi, V. and Plesca, M. (2014). Empirical Characteristics of Legal and Illegal
Immigrants in the USA. Journal of Population Economics, 27(4):923–960.

Costrell, R. M. and Loury, G. C. (2004). Distribution of Ability and Earnings in a
Hierarchical Job Assignment Model. Journal of Political Economy, 112(6):1322–
1363.

Donaldson, D. (2018). Railroads of the Raj: Estimating the Impact of Trans-
portation Infrastructure. American Economic Review, 108(4-5):899–934.

Dupuy, A., Galichon, A., Jaffe, S., and Kominers, S. D. (2017). Taxation in
Matching Markets. SSRN Electronic Journal.

Dustmann, C., Frattini, T., and Preston, I. P. (2013). The Effect of Immigration
Along the Distribution of Wages. Review of Economic Studies, 80(1):145–173.

Eaton, J. and Kortum, S. (2002). Technology, Geography, and Trade. Economet-
rica, 70(5):1741–1779.

Eaton, J., Kortum, S., and Kramarz, F. (2011). An Anatomy of International
Trade: Evidence from French Firms. Econometrica, 79(5):1453–1498.

Foged, M. and Peri, G. (2016). Immigrants’ Effect on Native Workers: New Anal-
ysis on Longitudinal Data. American Economic Journal: Applied Economics,
8(2):1–34.

Gola, P. (2019). Supply and Demand in a Two-Sector Matching Model.
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